نماذج توزيع عالية الجودة يمكن التقاط العلاقات المعجمية والدلالية بين الكلمات.وبالتالي، يقوم الباحثون بتصميم مختلف المهام الجوهرية لاختبار ما إذا كانت هذه العلاقات يتم القبض عليها.ومع ذلك، فإن معظم المهام الجوهرية مصممة للغات الحديثة، وهناك نقص في طرق التقييم للنماذج التوزيعية للشرج التاريخي.في هذه الورقة، أجرينا BAHP: معيارا لتقييم Adgeddings Word باللغة البرتغالية التاريخية، والذي يحتوي على أربعة أنواع من الاختبارات: التشابه، التشابه، والكشف التفويض، والتماسك.درسنا نماذج Word2Vec الناتجة عن اثنين من البرتغالية التاريخية في مجموعات الاختبار الأربعة هذه.توضح النتائج أن مجموعات الاختبار الخاصة بنا قادرة على قياس جودة نماذج مساحة المتجهات ويمكن أن توفر وجهة نظر شاملة لقدرة النموذج على التقاط معلومات النحوية والدلامة.علاوة على ذلك، يمكن بسهولة امتدت منهجية إنشاء مجموعات الاختبار الخاصة بنا إلى لغات تاريخية أخرى.
High quality distributional models can capture lexical and semantic relations between words. Hence, researchers design various intrinsic tasks to test whether such relations are captured. However, most of the intrinsic tasks are designed for modern languages, and there is a lack of evaluation methods for distributional models of historical corpora. In this paper, we conducted BAHP: a benchmark of assessing word embeddings in Historical Portuguese, which contains four types of tests: analogy, similarity, outlier detection, and coherence. We examined word2vec models generated from two historical Portuguese corpora in these four test sets. The results demonstrate that our test sets are capable of measuring the quality of vector space models and can provide a holistic view of the model's ability to capture syntactic and semantic information. Furthermore, the methodology for the creation of our test sets can be easily extended to other historical languages.
References used
https://aclanthology.org/
Word embeddings are a core component of modern natural language processing systems, making the ability to thoroughly evaluate them a vital task. We describe DiaLex, a benchmark for intrinsic evaluation of dialectal Arabic word embeddings. DiaLex cove
This paper presents our contribution to the ProfNER shared task. Our work focused on evaluating different pre-trained word embedding representations suitable for the task. We further explored combinations of embeddings in order to improve the overall results.
Modern natural language understanding models depend on pretrained subword embeddings, but applications may need to reason about words that were never or rarely seen during pretraining. We show that examples that depend critically on a rarer word are
In this study, we study language change in Chinese Biji by using a classification task: classifying Ancient Chinese texts by time periods. Specifically, we focus on a unique genre in classical Chinese literature: Biji (literally notebook'' or brush n
Term and glossary management are vital steps of preparation of every language specialist, and they play a very important role at the stage of education of translation professionals. The growing trend of efficient time management and constant time con