Do you want to publish a course? Click here

FrameNet-like Annotation of Olfactory Information in Texts

شروح تشبه Framenet لمعلومات الشمية في النصوص

603   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Although olfactory references play a crucial role in our cultural memory, only few works in NLP have tried to capture them from a computational perspective. Currently, the main challenge is not much the development of technological components for olfactory information extraction, given recent advances in semantic processing and natural language understanding, but rather the lack of a theoretical framework to capture this information from a linguistic point of view, as a preliminary step towards the development of automated systems. Therefore, in this work we present the annotation guidelines, developed with the help of history scholars and domain experts, aimed at capturing all the relevant elements involved in olfactory situations or events described in texts. These guidelines have been inspired by FrameNet annotation, but underwent some adaptations, which are detailed in this paper. Furthermore, we present a case study concerning the annotation of olfactory situations in English historical travel writings describing trips to Italy. An analysis of the most frequent role fillers show that olfactory descriptions pertain to some typical domains such as religion, food, nature, ancient past, poor sanitation, all supporting the creation of a stereotypical imagery related to Italy. On the other hand, positive feelings triggered by smells are prevalent, and contribute to framing travels to Italy as an exciting experience involving all senses.



References used
https://aclanthology.org/
rate research

Read More

FrameNet and the Multilingual FrameNet project have produced multilingual semantic annotations of parallel texts that yield extremely fine-grained typological insights. Moreover, frame semantic annotation of a wide cross-section of languages would pr ovide information on the limits of Frame Semantics (Fillmore 1982, Fillmore1985). Multilingual semantic annotation offers critical input for research on linguistic diversity and recurrent patterns in computational typology. Drawing on results from FrameNet annotation of parallel texts, this paper proposes frame semantic annotation as a new component to complement the state of the art in computational semantic typology.
FrameNet (Lowe, 1997; Baker et al., 1998; Fillmore and Atkins, 1998; Johnson et al., 2001) is a computational lexicography project that aims to offer insight into the semantic relationships between predicate and arguments. Having uses in many NLP app lications, FrameNet has proven itself as a valuable resource. The main goal of this study is laying the foundation for building a comprehensive and cohesive Turkish FrameNet that is compatible with other resources like PropBank (Kara et al., 2020) or WordNet (Bakay et al., 2019; Ehsani, 2018; Ehsani et al., 2018; Parlar et al., 2019; Bakay et al., 2020) in the Turkish language.
This paper describes the training process of the first Czech monolingual language representation models based on BERT and ALBERT architectures. We pre-train our models on more than 340K of sentences, which is 50 times more than multilingual models th at include Czech data. We outperform the multilingual models on 9 out of 11 datasets. In addition, we establish the new state-of-the-art results on nine datasets. At the end, we discuss properties of monolingual and multilingual models based upon our results. We publish all the pre-trained and fine-tuned models freely for the research community.
In this paper, we introduce FITAnnotator, a generic web-based tool for efficient text annotation. Benefiting from the fully modular architecture design, FITAnnotator provides a systematic solution for the annotation of a variety of natural language p rocessing tasks, including classification, sequence tagging and semantic role annotation, regardless of the language. Three kinds of interfaces are developed to annotate instances, evaluate annotation quality and manage the annotation task for annotators, reviewers and managers, respectively. FITAnnotator also gives intelligent annotations by introducing task-specific assistant to support and guide the annotators based on active learning and incremental learning strategies. This assistant is able to effectively update from the annotator feedbacks and easily handle the incremental labeling scenarios.
In this study, we study language change in Chinese Biji by using a classification task: classifying Ancient Chinese texts by time periods. Specifically, we focus on a unique genre in classical Chinese literature: Biji (literally notebook'' or brush n otes''), i.e., collections of anecdotes, quotations, etc., anything authors consider noteworthy, Biji span hundreds of years across many dynasties and conserve informal language in written form. For these reasons, they are regarded as a good resource for investigating language change in Chinese (Fang, 2010). In this paper, we create a new dataset of 108 Biji across four dynasties. Based on the dataset, we first introduce a time period classification task for Chinese. Then we investigate different feature representation methods for classification. The results show that models using contextualized embeddings perform best. An analysis of the top features chosen by the word n-gram model (after bleaching proper nouns) confirms that these features are informative and correspond to observations and assumptions made by historical linguists.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا