Do you want to publish a course? Click here

Single-dataset Experts for Multi-dataset Question Answering

خبراء DataSet واحد للحصول على سؤال متعدد البيانات

338   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Many datasets have been created for training reading comprehension models, and a natural question is whether we can combine them to build models that (1) perform better on all of the training datasets and (2) generalize and transfer better to new datasets. Prior work has addressed this goal by training one network simultaneously on multiple datasets, which works well on average but is prone to over- or under-fitting different sub- distributions and might transfer worse compared to source models with more overlap with the target dataset. Our approach is to model multi-dataset question answering with an ensemble of single-dataset experts, by training a collection of lightweight, dataset-specific adapter modules (Houlsby et al., 2019) that share an underlying Transformer model. We find that these Multi-Adapter Dataset Experts (MADE) outperform all our baselines in terms of in-distribution accuracy, and simple methods based on parameter-averaging lead to better zero-shot generalization and few-shot transfer performance, offering a strong and versatile starting point for building new reading comprehension systems.



References used
https://aclanthology.org/
rate research

Read More

We propose CodeQA, a free-form question answering dataset for the purpose of source code comprehension: given a code snippet and a question, a textual answer is required to be generated. CodeQA contains a Java dataset with 119,778 question-answer pai rs and a Python dataset with 70,085 question-answer pairs. To obtain natural and faithful questions and answers, we implement syntactic rules and semantic analysis to transform code comments into question-answer pairs. We present the construction process and conduct systematic analysis of our dataset. Experiment results achieved by several neural baselines on our dataset are shown and discussed. While research on question-answering and machine reading comprehension develops rapidly, few prior work has drawn attention to code question answering. This new dataset can serve as a useful research benchmark for source code comprehension.
NLP research in Hebrew has largely focused on morphology and syntax, where rich annotated datasets in the spirit of Universal Dependencies are available. Semantic datasets, however, are in short supply, hindering crucial advances in the development o f NLP technology in Hebrew. In this work, we present ParaShoot, the first question answering dataset in modern Hebrew. The dataset follows the format and crowdsourcing methodology of SQuAD, and contains approximately 3000 annotated examples, similar to other question-answering datasets in low-resource languages. We provide the first baseline results using recently-released BERT-style models for Hebrew, showing that there is significant room for improvement on this task.
We tackle multi-choice question answering. Acquiring related commonsense knowledge to the question and options facilitates the recognition of the correct answer. However, the current reasoning models suffer from the noises in the retrieved knowledge. In this paper, we propose a novel encoding method which is able to conduct interception and soft filtering. This contributes to the harvesting and absorption of representative information with less interference from noises. We experiment on CommonsenseQA. Experimental results illustrate that our method yields substantial and consistent improvements compared to the strong Bert, RoBERTa and Albert-based baselines.
While diverse question answering (QA) datasets have been proposed and contributed significantly to the development of deep learning models for QA tasks, the existing datasets fall short in two aspects. First, we lack QA datasets covering complex ques tions that involve answers as well as the reasoning processes to get them. As a result, the state-of-the-art QA research on numerical reasoning still focuses on simple calculations and does not provide the mathematical expressions or evidence justifying the answers. Second, the QA community has contributed a lot of effort to improve the interpretability of QA models. However, they fail to explicitly show the reasoning process, such as the evidence order for reasoning and the interactions between different pieces of evidence. To address the above shortcoming, we introduce NOAHQA, a conversational and bilingual QA dataset with questions requiring numerical reasoning with compound mathematical expressions. With NOAHQA, we develop an interpretable reasoning graph as well as the appropriate evaluation metric to measure the answer quality. We evaluate the state-of-the-art QA models trained using existing QA datasets on NOAHQA and show that the best among them can only achieve 55.5 exact match scores, while the human performance is 89.7. We also present a new QA model for generating a reasoning graph where the reasoning graph metric still has a large gap compared with that of humans, eg, 28 scores.
Information seeking is an essential step for open-domain question answering to efficiently gather evidence from a large corpus. Recently, iterative approaches have been proven to be effective for complex questions, by recursively retrieving new evide nce at each step. However, almost all existing iterative approaches use predefined strategies, either applying the same retrieval function multiple times or fixing the order of different retrieval functions, which cannot fulfill the diverse requirements of various questions. In this paper, we propose a novel adaptive information-seeking strategy for open-domain question answering, namely AISO. Specifically, the whole retrieval and answer process is modeled as a partially observed Markov decision process, where three types of retrieval operations (e.g., BM25, DPR, and hyperlink) and one answer operation are defined as actions. According to the learned policy, AISO could adaptively select a proper retrieval action to seek the missing evidence at each step, based on the collected evidence and the reformulated query, or directly output the answer when the evidence set is sufficient for the question. Experiments on SQuAD Open and HotpotQA fullwiki, which serve as single-hop and multi-hop open-domain QA benchmarks, show that AISO outperforms all baseline methods with predefined strategies in terms of both retrieval and answer evaluations.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا