Do you want to publish a course? Click here

What Can a Generative Language Model Answer About a Passage?

ماذا يمكن أن يجيب نموذج اللغة التوليدية حول مقطع؟

428   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Generative language models trained on large, diverse corpora can answer questions about a passage by generating the most likely continuation of the passage followed by a question/answer pair. However, accuracy rates vary depending on the type of question asked. In this paper we keep the passage fixed, and test with a wide variety of question types, exploring the strengths and weaknesses of the GPT-3 language model. We provide the passage and test questions as a challenge set for other language models.

References used
https://aclanthology.org/
rate research

Read More

Despite achieving encouraging results, neural Referring Expression Generation models are often thought to lack transparency. We probed neural Referential Form Selection (RFS) models to find out to what extent the linguistic features influencing the R E form are learned and captured by state-of-the-art RFS models. The results of 8 probing tasks show that all the defined features were learned to some extent. The probing tasks pertaining to referential status and syntactic position exhibited the highest performance. The lowest performance was achieved by the probing models designed to predict discourse structure properties beyond the sentence level.
GPT-3 shows remarkable in-context learning ability of large-scale language models (LMs) trained on hundreds of billion scale data. Here we address some remaining issues less reported by the GPT-3 paper, such as a non-English LM, the performances of d ifferent sized models, and the effect of recently introduced prompt optimization on in-context learning. To achieve this, we introduce HyperCLOVA, a Korean variant of 82B GPT-3 trained on a Korean-centric corpus of 560B tokens. Enhanced by our Korean-specific tokenization, HyperCLOVA with our training configuration shows state-of-the-art in-context zero-shot and few-shot learning performances on various downstream tasks in Korean. Also, we show the performance benefits of prompt-based learning and demonstrate how it can be integrated into the prompt engineering pipeline. Then we discuss the possibility of materializing the No Code AI paradigm by providing AI prototyping capabilities to non-experts of ML by introducing HyperCLOVA studio, an interactive prompt engineering interface. Lastly, we demonstrate the potential of our methods with three successful in-house applications.
Multilingual Neural Machine Translation has achieved remarkable performance by training a single translation model for multiple languages. This paper describes our submission (Team ID: CFILT-IITB) for the MultiIndicMT: An Indic Language Multilingual Task at WAT 2021. We train multilingual NMT systems by sharing encoder and decoder parameters with language embedding associated with each token in both encoder and decoder. Furthermore, we demonstrate the use of transliteration (script conversion) for Indic languages in reducing the lexical gap for training a multilingual NMT system. Further, we show improvement in performance by training a multilingual NMT system using languages of the same family, i.e., related languages.
We analyse how a transformer-based language model learns the rules of chess from text data of recorded games. We show how it is possible to investigate how the model capacity and the available number of training data influence the learning success of a language model with the help of chess-specific metrics. With these metrics, we show that more games used for training in the studied range offers significantly better results for the same training time. However, model size does not show such a clear influence. It is also interesting to observe that the usual evaluation metrics for language models, predictive accuracy and perplexity, give no indication of this here. Further examination of trained models reveals how they store information about board state in the activations of neuron groups, and how the overall sequence of previous moves influences the newly-generated moves.
Temporal commonsense reasoning is a challenging task as it requires temporal knowledge usually not explicit in text. In this work, we propose an ensemble model for temporal commonsense reasoning. Our model relies on pre-trained contextual representat ions from transformer-based language models (i.e., BERT), and on a variety of training methods for enhancing model generalization: 1) multi-step fine-tuning using carefully selected auxiliary tasks and datasets, and 2) a specifically designed temporal masked language model task aimed to capture temporal commonsense knowledge. Our model greatly outperforms the standard fine-tuning approach and strong baselines on the MC-TACO dataset.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا