في هذه الورقة، نناقش تفاصيل أنظمة الترجمة المختلفة (MT) التي قدمناها لمهمة Loresmt الإنجليزية Marathi.كجزء من هذه المهمة، قدمنا ثلاثة أنظمة ترجمة آلية عصبية مختلفة (NMT)؛نظام أساسي في اللغة الإنجليزية - المراثي، نظام ماريثي-إنجليزي خط الأساس، ونظام إنجليزي - مراثي يعتمد على تقنية الترجمة الخلفي.نستكشف أداء أنظمة NMT هذه بين لغات اللغة الإنجليزية والمراثي، والتي تشكل زوج لغة موارد منخفضة بسبب عدم توفر بيانات متوازية كافية.نستكشف أيضا أداء تقنية الترجمة الخلفي عندما يتم الحصول على البيانات المترجمة الخلفي من أنظمة NMT التي يتم تدريبها على كمية أقل من البيانات.من تجاربنا، نلاحظ أن تقنية الترجمة الخلفي يمكن أن تساعد في تحسين جودة MT على خط الأساس لزوج اللغة الإنجليزية المهاراتية.
In this paper, we discuss the details of the various Machine Translation (MT) systems that we have submitted for the English-Marathi LoResMT task. As a part of this task, we have submitted three different Neural Machine Translation (NMT) systems; a Baseline English-Marathi system, a Baseline Marathi-English system, and an English-Marathi system that is based on the back-translation technique. We explore the performance of these NMT systems between English and Marathi languages, which forms a low resource language pair due to unavailability of sufficient parallel data. We also explore the performance of the back-translation technique when the back-translated data is obtained from NMT systems that are trained on a very less amount of data. From our experiments, we observe that the back-translation technique can help improve the MT quality over the baseline for the English-Marathi language pair.
References used
https://aclanthology.org/
In this paper, we (team - oneNLP-IIITH) describe our Neural Machine Translation approaches for English-Marathi (both direction) for LoResMT-20211 . We experimented with transformer based Neural Machine Translation and explored the use of different li
In this paper and we explore different techniques of overcoming the challenges of low-resource in Neural Machine Translation (NMT) and specifically focusing on the case of English-Marathi NMT. NMT systems require a large amount of parallel corpora to
We present the findings of the LoResMT 2021 shared task which focuses on machine translation (MT) of COVID-19 data for both low-resource spoken and sign languages. The organization of this task was conducted as part of the fourth workshop on technolo
Translation models for the specific domain of translating Covid data from English to Irish were developed for the LoResMT 2021 shared task. Domain adaptation techniques, using a Covid-adapted generic 55k corpus from the Directorate General of Transla
We present the University of Central Florida systems for the LoResMT 2021 Shared Task, participating in the English-Irish and English-Marathi translation pairs. We focused our efforts on constrained track of the task, using transfer learning and subw