نقدم نتائج المهمة المشتركة ل LORESMT 2021 التي تركز على الترجمة الآلية (MT) من بيانات CovID-19 لكل من اللغات المنطوقة والتسوق المنخفضة الموارد. تم إجراء تنظيم هذه المهمة كجزء من ورشة العمل الرابعة حول تكنولوجيات الترجمة الآلية لغات الموارد المنخفضة (LORESMT). يتم تقديم Corpora المتوازي والمتاحة للجمهور والتي تتضمن الاتجاهات التالية: English↔irish، English↔marathi، وتايوانية Language Language Chinese. تتكون بيانات التدريب من 8112 و 20933 و 128608، على التوالي. هناك مجموعات بيانات أحادية الأحادية الإضافية للماراثية والإنجليزية التي تتكون من 21901 شريحة. تعتمد النتائج المقدمة هنا على مداخل من إجمالي ثمانية فرق. قدم ثلاثة فرق أنظمة للإنجليز في حين أن خمسة فرق قدمت أنظمة ل EnglishMarathi. لسوء الحظ، لم تكن هناك عروض أنظمة لمهمة التايوانية للتايوانية. تم حساب أقصى أداء النظام باستخدام BLEU ومتابعة AS 36.0 للغة الإنجليزية - الأيرلندية، 34.6 للأيرلندية - الإنجليزية، 24.2 للغة الإنجليزية - الماراثي، و 31.3 للماراثي - الإنجليزية.
We present the findings of the LoResMT 2021 shared task which focuses on machine translation (MT) of COVID-19 data for both low-resource spoken and sign languages. The organization of this task was conducted as part of the fourth workshop on technologies for machine translation of low resource languages (LoResMT). Parallel corpora is presented and publicly available which includes the following directions: English↔Irish, English↔Marathi, and Taiwanese Sign language↔Traditional Chinese. Training data consists of 8112, 20933 and 128608 segments, respectively. There are additional monolingual data sets for Marathi and English that consist of 21901 segments. The results presented here are based on entries from a total of eight teams. Three teams submitted systems for English↔Irish while five teams submitted systems for English↔Marathi. Unfortunately, there were no systems submissions for the Taiwanese Sign language↔Traditional Chinese task. Maximum system performance was computed using BLEU and follow as 36.0 for English--Irish, 34.6 for Irish--English, 24.2 for English--Marathi, and 31.3 for Marathi--English.
References used
https://aclanthology.org/
This paper describes Charles University sub-mission for Terminology translation shared task at WMT21. The objective of this task is to design a system which translates certain terms based on a provided terminology database, while preserving high over
We present the University of Central Florida systems for the LoResMT 2021 Shared Task, participating in the English-Irish and English-Marathi translation pairs. We focused our efforts on constrained track of the task, using transfer learning and subw
The machine translation efficiency task challenges participants to make their systems faster and smaller with minimal impact on translation quality. How much quality to sacrifice for efficiency depends upon the application, so participants were encou
We report the results of the WMT 2021 shared task on Quality Estimation, where the challenge is to predict the quality of the output of neural machine translation systems at the word and sentence levels. This edition focused on two main novel additio
We describe the second SIGMORPHON shared task on unsupervised morphology: the goal of the SIGMORPHON 2021 Shared Task on Unsupervised Morphological Paradigm Clustering is to cluster word types from a raw text corpus into paradigms. To this end, we re