Do you want to publish a course? Click here

Machine Translation in the Covid domain: an English-Irish case study for LoResMT 2021

ترجمة آلية في مجال Covid: دراسة حالة باللغة الإنجليزية الأيرلندية ل Loresmt 2021

587   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Translation models for the specific domain of translating Covid data from English to Irish were developed for the LoResMT 2021 shared task. Domain adaptation techniques, using a Covid-adapted generic 55k corpus from the Directorate General of Translation, were applied. Fine-tuning, mixed fine-tuning and combined dataset approaches were compared with models trained on an extended in-domain dataset. As part of this study, an English-Irish dataset of Covid related data, from the Health and Education domains, was developed. The highestperforming model used a Transformer architecture trained with an extended in-domain Covid dataset. In the context of this study, we have demonstrated that extending an 8k in-domain baseline dataset by just 5k lines improved the BLEU score by 27 points.



References used
https://aclanthology.org/
rate research

Read More

In this paper, we (team - oneNLP-IIITH) describe our Neural Machine Translation approaches for English-Marathi (both direction) for LoResMT-20211 . We experimented with transformer based Neural Machine Translation and explored the use of different li nguistic features like POS and Morph on subword unit for both English-Marathi and Marathi-English. In addition, we have also explored forward and backward translation using web-crawled monolingual data. We obtained 22.2 (overall 2 nd) and 31.3 (overall 1 st) BLEU scores for English-Marathi and Marathi-English on respectively
Incorporating multiple input modalities in a machine translation (MT) system is gaining popularity among MT researchers. Unlike the publicly available dataset for Multimodal Machine Translation (MMT) tasks, where the captions are short image descript ions, the news captions provide a more detailed description of the contents of the images. As a result, numerous named entities relating to specific persons, locations, etc., are found. In this paper, we acquire two monolingual news datasets reported in English and Hindi paired with the images to generate a synthetic English-Hindi parallel corpus. The parallel corpus is used to train the English-Hindi Neural Machine Translation (NMT) and an English-Hindi MMT system by incorporating the image feature paired with the corresponding parallel corpus. We also conduct a systematic analysis to evaluate the English-Hindi MT systems with 1) more synthetic data and 2) by adding back-translated data. Our finding shows improvement in terms of BLEU scores for both the NMT (+8.05) and MMT (+11.03) systems.
We present the findings of the LoResMT 2021 shared task which focuses on machine translation (MT) of COVID-19 data for both low-resource spoken and sign languages. The organization of this task was conducted as part of the fourth workshop on technolo gies for machine translation of low resource languages (LoResMT). Parallel corpora is presented and publicly available which includes the following directions: English↔Irish, English↔Marathi, and Taiwanese Sign language↔Traditional Chinese. Training data consists of 8112, 20933 and 128608 segments, respectively. There are additional monolingual data sets for Marathi and English that consist of 21901 segments. The results presented here are based on entries from a total of eight teams. Three teams submitted systems for English↔Irish while five teams submitted systems for English↔Marathi. Unfortunately, there were no systems submissions for the Taiwanese Sign language↔Traditional Chinese task. Maximum system performance was computed using BLEU and follow as 36.0 for English--Irish, 34.6 for Irish--English, 24.2 for English--Marathi, and 31.3 for Marathi--English.
We present the University of Central Florida systems for the LoResMT 2021 Shared Task, participating in the English-Irish and English-Marathi translation pairs. We focused our efforts on constrained track of the task, using transfer learning and subw ord segmentation to enhance our models given small amounts of training data. Our models achieved the highest BLEU scores on the fully constrained tracks of English-Irish, Irish-English, and Marathi-English with scores of 13.5, 21.3, and 17.9 respectively
In this paper, we describe our submissions for LoResMT Shared Task @MT Summit 2021 Conference. We built statistical translation systems in each direction for English ⇐⇒ Marathi language pair. This paper outlines initial baseline experiments with vari ous tokenization schemes to train models. Using optimal tokenization scheme we create synthetic data and further train augmented dataset to create more statistical models. Also, we reorder English to match Marathi syntax to further train another set of baseline and data augmented models using various tokenization schemes. We report configuration of the submitted systems and results produced by them.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا