Do you want to publish a course? Click here

Small-Scale Cross-Language Authorship Attribution on Social Media Comments

إزدام التأليف عبر النطاق عبر النطاق الصغير على تعليقات وسائل التواصل الاجتماعي

359   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Cross-language authorship attribution is the challenging task of classifying documents by bilingual authors where the training documents are written in a different language than the evaluation documents. Traditional solutions rely on either translation to enable the use of single-language features, or language-independent feature extraction methods. More recently, transformer-based language models like BERT can also be pre-trained on multiple languages, making them intuitive candidates for cross-language classifiers which have not been used for this task yet. We perform extensive experiments to benchmark the performance of three different approaches to a smallscale cross-language authorship attribution experiment: (1) using language-independent features with traditional classification models, (2) using multilingual pre-trained language models, and (3) using machine translation to allow single-language classification. For the language-independent features, we utilize universal syntactic features like part-of-speech tags and dependency graphs, and multilingual BERT as a pre-trained language model. We use a small-scale social media comments dataset, closely reflecting practical scenarios. We show that applying machine translation drastically increases the performance of almost all approaches, and that the syntactic features in combination with the translation step achieve the best overall classification performance. In particular, we demonstrate that pre-trained language models are outperformed by traditional models in small scale authorship attribution problems for every language combination analyzed in this paper.



References used
https://aclanthology.org/
rate research

Read More

Online social media platforms increasingly rely on Natural Language Processing (NLP) techniques to detect abusive content at scale in order to mitigate the harms it causes to their users. However, these techniques suffer from various sampling and ass ociation biases present in training data, often resulting in sub-par performance on content relevant to marginalized groups, potentially furthering disproportionate harms towards them. Studies on such biases so far have focused on only a handful of axes of disparities and subgroups that have annotations/lexicons available. Consequently, biases concerning non-Western contexts are largely ignored in the literature. In this paper, we introduce a weakly supervised method to robustly detect lexical biases in broader geo-cultural contexts. Through a case study on a publicly available toxicity detection model, we demonstrate that our method identifies salient groups of cross-geographic errors, and, in a follow up, demonstrate that these groupings reflect human judgments of offensive and inoffensive language in those geographic contexts. We also conduct analysis of a model trained on a dataset with ground truth labels to better understand these biases, and present preliminary mitigation experiments.
Abstract Much previous work characterizing language variation across Internet social groups has focused on the types of words used by these groups. We extend this type of study by employing BERT to characterize variation in the senses of words as wel l, analyzing two months of English comments in 474 Reddit communities. The specificity of different sense clusters to a community, combined with the specificity of a community's unique word types, is used to identify cases where a social group's language deviates from the norm. We validate our metrics using user-created glossaries and draw on sociolinguistic theories to connect language variation with trends in community behavior. We find that communities with highly distinctive language are medium-sized, and their loyal and highly engaged users interact in dense networks.
Abusive language is a growing phenomenon on social media platforms. Its effects can reach beyond the online context, contributing to mental or emotional stress on users. Automatic tools for detecting abuse can alleviate the issue. In practice, develo ping automated methods to detect abusive language relies on good quality data. However, there is currently a lack of standards for creating datasets in the field. These standards include definitions of what is considered abusive language, annotation guidelines and reporting on the process. This paper introduces an annotation framework inspired by legal concepts to define abusive language in the context of online harassment. The framework uses a 7-point Likert scale for labelling instead of class labels. We also present ALYT -- a dataset of Abusive Language on YouTube. ALYT includes YouTube comments in English extracted from videos on different controversial topics and labelled by Law students. The comments were sampled from the actual collected data, without artificial methods for increasing the abusive content. The paper describes the annotation process thoroughly, including all its guidelines and training steps.
Social media texts such as blog posts, comments, and tweets often contain offensive languages including racial hate speech comments, personal attacks, and sexual harassment. Detecting inappropriate use of language is, therefore, of utmost importance for the safety of the users as well as for suppressing hateful conduct and aggression. Existing approaches to this problem are mostly available for resource-rich languages such as English and German. In this paper, we characterize the offensive language in Nepali, a low-resource language, highlighting the challenges that need to be addressed for processing Nepali social media text. We also present experiments for detecting offensive language using supervised machine learning. Besides contributing the first baseline approaches of detecting offensive language in Nepali, we also release human annotated data sets to encourage future research on this crucial topic.
We present machine learning classifiers to automatically identify COVID-19 misinformation on social media in three languages: English, Bulgarian, and Arabic. We compared 4 multitask learning models for this task and found that a model trained with En glish BERT achieves the best results for English, and multilingual BERT achieves the best results for Bulgarian and Arabic. We experimented with zero shot, few shot, and target-only conditions to evaluate the impact of target-language training data on classifier performance, and to understand the capabilities of different models to generalize across languages in detecting misinformation online. This work was performed as a submission to the shared task, NLP4IF 2021: Fighting the COVID-19 Infodemic. Our best models achieved the second best evaluation test results for Bulgarian and Arabic among all the participating teams and obtained competitive scores for English.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا