نحن تصف أمين البرنامج النصي بمساعدة الماكينة (MASC)، وهو نظام للتأليف البرمجي التعاوني للآلة البشرية.تشمل البرامج النصية التي تم إنتاجها مع MASC (1) الأوصاف الإنجليزية للأحداث الفرعية التي تشمل حدث أكبر ومعقدة؛(2) أنواع الأحداث لكل من تلك الأحداث؛(3) سجل من الكيانات المتوقعة للمشاركة في أحداث فرعية متعددة؛و (4) التسلسل الزمني بين الأحداث الفرعية.MASC أتمتة أجزاء من عملية إنشاء البرنامج النصي مع اقتراحات لأنواع الأحداث، والروابط إلى Wikidata، والأحداث الفرعية التي قد نسيانها.نوضح كيف تكون هذه الأوتوماتية مفيدة لكاتب البرنامج النصي مع عدد قليل من البرامج النصية دراسة الحالة.
We describe Machine-Aided Script Curator (MASC), a system for human-machine collaborative script authoring. Scripts produced with MASC include (1) English descriptions of sub-events that comprise a larger, complex event; (2) event types for each of those events; (3) a record of entities expected to participate in multiple sub-events; and (4) temporal sequencing between the sub-events. MASC automates portions of the script creation process with suggestions for event types, links to Wikidata, and sub-events that may have been forgotten. We illustrate how these automations are useful to the script writer with a few case-study scripts.
References used
https://aclanthology.org/
We implemented a neural machine translation system that uses automatic sequence tagging to improve the quality of translation. Instead of operating on unannotated sentence pairs, our system uses pre-trained tagging systems to add linguistic features
Successful Machine Translation (MT) deployment requires understanding not only the intrinsic qualities of MT output, such as fluency and adequacy, but also user perceptions. Users who do not understand the source language respond to MT output based o
Multilingual neural machine translation (MNMT) learns to translate multiple language pairs with a single model, potentially improving both the accuracy and the memory-efficiency of deployed models. However, the heavy data imbalance between languages
Several neural-based metrics have been recently proposed to evaluate machine translation quality. However, all of them resort to point estimates, which provide limited information at segment level. This is made worse as they are trained on noisy, bia
When building machine translation systems, one often needs to make the best out of heterogeneous sets of parallel data in training, and to robustly handle inputs from unexpected domains in testing. This multi-domain scenario has attracted a lot of re