Do you want to publish a course? Click here

Discovering Better Model Architectures for Medical Query Understanding

اكتشاف أساسيات نموذج أفضل لفهم الاستعلام الطبي

545   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

In developing an online question-answering system for the medical domains, natural language inference (NLI) models play a central role in question matching and intention detection. However, which models are best for our datasets? Manually selecting or tuning a model is time-consuming. Thus we experiment with automatically optimizing the model architectures on the task at hand via neural architecture search (NAS). First, we formulate a novel architecture search space based on the previous NAS literature, supporting cross-sentence attention (cross-attn) modeling. Second, we propose to modify the ENAS method to accelerate and stabilize the search results. We conduct extensive experiments on our two medical NLI tasks. Results show that our system can easily outperform the classical baseline models. We compare different NAS methods and demonstrate our approach provides the best results.



References used
https://aclanthology.org/
rate research

Read More

Healthcare is becoming a more and more important research topic recently. With the growing data in the healthcare domain, it offers a great opportunity for deep learning to improve the quality of service and reduce costs. However, the complexity of e lectronic health records (EHR) data is a challenge for the application of deep learning. Specifically, the data produced in the hospital admissions are monitored by the EHR system, which includes structured data like daily body temperature and unstructured data like free text and laboratory measurements. Although there are some preprocessing frameworks proposed for specific EHR data, the clinical notes that contain significant clinical value are beyond the realm of their consideration. Besides, whether these different data from various views are all beneficial to the medical tasks and how to best utilize these data remain unclear. Therefore, in this paper, we first extract the accompanying clinical notes from EHR and propose a method to integrate these data, we also comprehensively study the different models and the data leverage methods for better medical task prediction performance. The results on two prediction tasks show that our fused model with different data outperforms the state-of-the-art method without clinical notes, which illustrates the importance of our fusion method and the clinical note features.
Query Rewriting (QR) is proposed to solve the problem of the word mismatch between queries and documents in Web search. Existing approaches usually model QR with an end-to-end sequence-to-sequence (seq2seq) model. The state-of-the-art Transformer-bas ed models can effectively learn textual semantics from user session logs, but they often ignore users' geographic location information that is crucial for the Point-of-Interest (POI) search of map services. In this paper, we proposed a pre-training model, called Geo-BERT, to integrate semantics and geographic information in the pre-trained representations of POIs. Firstly, we simulate POI distribution in the real world as a graph, in which nodes represent POIs and multiple geographic granularities. Then we use graph representation learning methods to get geographic representations. Finally, we train a BERT-like pre-training model with text and POIs' graph embeddings to get an integrated representation of both geographic and semantic information, and apply it in the QR of POI search. The proposed model achieves excellent accuracy on a wide range of real-world datasets of map services.
In this paper, we propose a definition and taxonomy of various types of non-standard textual content -- generally referred to as noise'' -- in Natural Language Processing (NLP). While data pre-processing is undoubtedly important in NLP, especially wh en dealing with user-generated content, a broader understanding of different sources of noise and how to deal with them is an aspect that has been largely neglected. We provide a comprehensive list of potential sources of noise, categorise and describe them, and show the impact of a subset of standard pre-processing strategies on different tasks. Our main goal is to raise awareness of non-standard content -- which should not always be considered as noise'' -- and of the need for careful, task-dependent pre-processing. This is an alternative to blanket, all-encompassing solutions generally applied by researchers through standard'' pre-processing pipelines. The intention is for this categorisation to serve as a point of reference to support NLP researchers in devising strategies to clean, normalise or embrace non-standard content.
Existing pre-trained language models (PLMs) have demonstrated the effectiveness of self-supervised learning for a broad range of natural language processing (NLP) tasks. However, most of them are not explicitly aware of domain-specific knowledge, whi ch is essential for downstream tasks in many domains, such as tasks in e-commerce scenarios. In this paper, we propose K-PLUG, a knowledge-injected pre-trained language model based on the encoder-decoder transformer that can be transferred to both natural language understanding and generation tasks. Specifically, we propose five knowledge-aware self-supervised pre-training objectives to formulate the learning of domain-specific knowledge, including e-commerce domain-specific knowledge-bases, aspects of product entities, categories of product entities, and unique selling propositions of product entities. We verify our method in a diverse range of e-commerce scenarios that require domain-specific knowledge, including product knowledge base completion, abstractive product summarization, and multi-turn dialogue. K-PLUG significantly outperforms baselines across the board, which demonstrates that the proposed method effectively learns a diverse set of domain-specific knowledge for both language understanding and generation tasks. Our code is available.
Lack of training data presents a grand challenge to scaling out spoken language understanding (SLU) to low-resource languages. Although various data augmentation approaches have been proposed to synthesize training data in low-resource target languag es, the augmented data sets are often noisy, and thus impede the performance of SLU models. In this paper we focus on mitigating noise in augmented data. We develop a denoising training approach. Multiple models are trained with data produced by various augmented methods. Those models provide supervision signals to each other. The experimental results show that our method outperforms the existing state of the art by 3.05 and 4.24 percentage points on two benchmark datasets, respectively. The code will be made open sourced on github.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا