Do you want to publish a course? Click here

Do RNN States Encode Abstract Phonological Alternations?

هل تشوش دول RNN استيقامات صوتية مجردة؟

59   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Sequence-to-sequence models have delivered impressive results in word formation tasks such as morphological inflection, often learning to model subtle morphophonological details with limited training data. Despite the performance, the opacity of neural models makes it difficult to determine whether complex generalizations are learned, or whether a kind of separate rote memorization of each morphophonological process takes place. To investigate whether complex alternations are simply memorized or whether there is some level of generalization across related sound changes in a sequence-to-sequence model, we perform several experiments on Finnish consonant gradation---a complex set of sound changes triggered in some words by certain suffixes. We find that our models often---though not always---encode 17 different consonant gradation processes in a handful of dimensions in the RNN. We also show that by scaling the activations in these dimensions we can control whether consonant gradation occurs and the direction of the gradation.

References used
https://aclanthology.org/
rate research

Read More

This paper introduces the SemEval-2021 shared task 4: Reading Comprehension of Abstract Meaning (ReCAM). This shared task is designed to help evaluate the ability of machines in representing and understanding abstract concepts.Given a passage and the corresponding question, a participating system is expected to choose the correct answer from five candidates of abstract concepts in cloze-style machine reading comprehension tasks. Based on two typical definitions of abstractness, i.e., the imperceptibility and nonspecificity, our task provides three subtasks to evaluate models' ability in comprehending the two types of abstract meaning and the models' generalizability. Specifically, Subtask 1 aims to evaluate how well a participating system models concepts that cannot be directly perceived in the physical world. Subtask 2 focuses on models' ability in comprehending nonspecific concepts located high in a hypernym hierarchy given the context of a passage. Subtask 3 aims to provide some insights into models' generalizability over the two types of abstractness. During the SemEval-2021 official evaluation period, we received 23 submissions to Subtask 1 and 28 to Subtask 2. The participating teams additionally made 29 submissions to Subtask 3. The leaderboard and competition website can be found at https://competitions.codalab.org/competitions/26153. The data and baseline code are available at https://github.com/boyuanzheng010/SemEval2021-Reading-Comprehension-of-Abstract-Meaning.
Scientific claim verification can help the researchers to easily find the target scientific papers with the sentence evidence from a large corpus for the given claim. Some existing works propose pipeline models on the three tasks of abstract retrieva l, rationale selection and stance prediction. Such works have the problems of error propagation among the modules in the pipeline and lack of sharing valuable information among modules. We thus propose an approach, named as ARSJoint, that jointly learns the modules for the three tasks with a machine reading comprehension framework by including claim information. In addition, we enhance the information exchanges and constraints among tasks by proposing a regularization term between the sentence attention scores of abstract retrieval and the estimated outputs of rational selection. The experimental results on the benchmark dataset SciFact show that our approach outperforms the existing works.
The tasks of Rich Semantic Parsing, such as Abstract Meaning Representation (AMR), share similar goals with Information Extraction (IE) to convert natural language texts into structured semantic representations. To take advantage of such similarity, we propose a novel AMR-guided framework for joint information extraction to discover entities, relations, and events with the help of a pre-trained AMR parser. Our framework consists of two novel components: 1) an AMR based semantic graph aggregator to let the candidate entity and event trigger nodes collect neighborhood information from AMR graph for passing message among related knowledge elements; 2) an AMR guided graph decoder to extract knowledge elements based on the order decided by the hierarchical structures in AMR. Experiments on multiple datasets have shown that the AMR graph encoder and decoder have provided significant gains and our approach has achieved new state-of-the-art performance on all IE subtasks.
The research community has proposed copious modifications to the Transformer architecture since it was introduced over three years ago, relatively few of which have seen widespread adoption. In this paper, we comprehensively evaluate many of these mo difications in a shared experimental setting that covers most of the common uses of the Transformer in natural language processing. Surprisingly, we find that most modifications do not meaningfully improve performance. Furthermore, most of the Transformer variants we found beneficial were either developed in the same codebase that we used or are relatively minor changes. We conjecture that performance improvements may strongly depend on implementation details and correspondingly make some recommendations for improving the generality of experimental results.
This paper describes the winning system for subtask 2 and the second-placed system for subtask 1 in SemEval 2021 Task 4: ReadingComprehension of Abstract Meaning. We propose to use pre-trianed Electra discriminator to choose the best abstract word fr om five candidates. An upper attention and auto denoising mechanism is introduced to process the long sequences. The experiment results demonstrate that this contribution greatly facilitatesthe contextual language modeling in reading comprehension task. The ablation study is also conducted to show the validity of our proposed methods.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا