تصف هذه الورقة النظام الفائز ل SubTask 2 والنظام الموضح الثاني لبرنامج التعرية الفرعية 1 في مهمة Semeval 2021 4: قراءة القراءة من معنى مجردة.نقترح استخدام جهاز تمييز Electra المصدر الذي يزعجني اختيار أفضل كلمة مجردة من خمسة مرشحين.يتم إدخال آلية الاهتمام العلوي والتنمية التلقائي لمعالجة التسلسلات الطويلة.توضح نتائج التجربة أن هذه المساهمة إلى حد كبير تسهيل النمذجة في اللغة السياقية في مهمة قراءة الفهم.تتم دراسة الاجتثاث أيضا لإظهار صلاحية أساليبنا المقترحة.
This paper describes the winning system for subtask 2 and the second-placed system for subtask 1 in SemEval 2021 Task 4: ReadingComprehension of Abstract Meaning. We propose to use pre-trianed Electra discriminator to choose the best abstract word from five candidates. An upper attention and auto denoising mechanism is introduced to process the long sequences. The experiment results demonstrate that this contribution greatly facilitatesthe contextual language modeling in reading comprehension task. The ablation study is also conducted to show the validity of our proposed methods.
References used
https://aclanthology.org/
This paper introduces the SemEval-2021 shared task 4: Reading Comprehension of Abstract Meaning (ReCAM). This shared task is designed to help evaluate the ability of machines in representing and understanding abstract concepts.Given a passage and the
This paper describes our system for SemEval-2021 Task 4: Reading Comprehension of Abstract Meaning. To accomplish this task, we utilize the Knowledge-Enhanced Graph Attention Network (KEGAT) architecture with a novel semantic space transformation str
Most question answering tasks focuses on predicting concrete answers, e.g., named entities. These tasks can be normally achieved by understanding the contexts without additional information required. In Reading Comprehension of Abstract Meaning (ReCA
This paper describes our system for Task 4 of SemEval-2021: Reading Comprehension of Abstract Meaning (ReCAM). We participated in all subtasks where the main goal was to predict an abstract word missing from a statement. We fine-tuned the pre-trained
SemEval task 4 aims to find a proper option from multiple candidates to resolve the task of machine reading comprehension. Most existing approaches propose to concat question and option together to form a context-aware model. However, we argue that s