Do you want to publish a course? Click here

Semantic parsing aims at translating natural language (NL) utterances onto machine-interpretable programs, which can be executed against a real-world environment. The expensive annotation of utterance-program pairs has long been acknowledged as a maj or bottleneck for the deployment of contemporary neural models to real-life applications. In this work, we focus on the task of semi-supervised learning where a limited amount of annotated data is available together with many unlabeled NL utterances. Based on the observation that programs which correspond to NL utterances should always be executable, we propose to encourage a parser to generate executable programs for unlabeled utterances. Due to the large search space of executable programs, conventional methods that use beam-search for approximation, such as self-training and top-k marginal likelihood training, do not perform as well. Instead, we propose a set of new training objectives that are derived by approaching the problem of learning from executions from the posterior regularization perspective. Our new objectives outperform conventional methods on Overnight and GeoQuery, bridging the gap between semi-supervised and supervised learning.
Continual learning has become increasingly important as it enables NLP models to constantly learn and gain knowledge over time. Previous continual learning methods are mainly designed to preserve knowledge from previous tasks, without much emphasis o n how to well generalize models to new tasks. In this work, we propose an information disentanglement based regularization method for continual learning on text classification. Our proposed method first disentangles text hidden spaces into representations that are generic to all tasks and representations specific to each individual task, and further regularizes these representations differently to better constrain the knowledge required to generalize. We also introduce two simple auxiliary tasks: next sentence prediction and task-id prediction, for learning better generic and specific representation spaces. Experiments conducted on large-scale benchmarks demonstrate the effectiveness of our method in continual text classification tasks with various sequences and lengths over state-of-the-art baselines. We have publicly released our code at https://github.com/GT-SALT/IDBR.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا