العديد من الأساليب الأخيرة تجاه استرجاع المعلومات العصبية تخفف من تكاليفها الحاسوبية باستخدام خط أنابيب الترتيب متعدد المراحل.في المرحلة الأولى، يتم استرجاع عدد من المرشحين المحتملين ذوي الصلة باستخدام نموذج استرجاع فعال مثل BM25.على الرغم من أن BM25 قد أثبت أداء لائق كمرفاة في المرحلة الأولى، فإنه يميل إلى تفويت الممرات ذات الصلة.في هذا السياق، نقترح كورت، وهو نموذج بسيط في المرحلة الأولى من المرحلة الأولى يرفع تمثيلات سياقية من نماذج اللغة المسبقة مسبقا مثل بيرت لاستكمال وظائف الترتيب القائمة على الأجل مع عدم التسبب في عدم وجود تأخير كبير في وقت الاستعلام.باستخدام DataSet MS Marco، نظهر أن Cort يزيد بشكل كبير من استدعاء المرشح من خلال استكمال BM25 مع المرشحين المفقودين.وبالتالي، نجد أن إعادة الراهنات اللاحقة تحقيق نتائج فائقة مع أقل مرشحين.نوضح كذلك أن استرجاع المرور باستخدام CORT يمكن تحقيقه مع انخفاض الآمون المنخفض بشكل مدهش.
Many recent approaches towards neural information retrieval mitigate their computational costs by using a multi-stage ranking pipeline. In the first stage, a number of potentially relevant candidates are retrieved using an efficient retrieval model such as BM25. Although BM25 has proven decent performance as a first-stage ranker, it tends to miss relevant passages. In this context we propose CoRT, a simple neural first-stage ranking model that leverages contextual representations from pretrained language models such as BERT to complement term-based ranking functions while causing no significant delay at query time. Using the MS MARCO dataset, we show that CoRT significantly increases the candidate recall by complementing BM25 with missing candidates. Consequently, we find subsequent re-rankers achieve superior results with less candidates. We further demonstrate that passage retrieval using CoRT can be realized with surprisingly low latencies.
References used
https://aclanthology.org/
The current approach to collecting human judgments of machine translation quality for the news translation task at WMT -- segment rating with document context -- is the most recent in a sequence of changes to WMT human annotation protocol. As these a
In Visual Question Answering (VQA), existing bilinear methods focus on the interaction between images and questions. As a result, the answers are either spliced into the questions or utilized as labels only for classification. On the other hand, tril
Being able to accurately perform Question Difficulty Estimation (QDE) can improve the accuracy of students' assessment and better their learning experience. Traditional approaches to QDE are either subjective or introduce a long delay before new ques
Representations from large pretrained models such as BERT encode a range of features into monolithic vectors, affording strong predictive accuracy across a range of downstream tasks. In this paper we explore whether it is possible to learn disentangl
Transformer models are expensive to fine-tune, slow for inference, and have large storage requirements. Recent approaches tackle these shortcomings by training smaller models, dynamically reducing the model size, and by training light-weight adapters