Do you want to publish a course? Click here

HTCInfoMax: A Global Model for Hierarchical Text Classification via Information Maximization

HTCINFOMAX: نموذج عالمي لتصنيف النص التسلسل الهرمي عبر تعظيم المعلومات

309   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

The current state-of-the-art model HiAGM for hierarchical text classification has two limitations. First, it correlates each text sample with all labels in the dataset which contains irrelevant information. Second, it does not consider any statistical constraint on the label representations learned by the structure encoder, while constraints for representation learning are proved to be helpful in previous work. In this paper, we propose HTCInfoMax to address these issues by introducing information maximization which includes two modules: text-label mutual information maximization and label prior matching. The first module can model the interaction between each text sample and its ground truth labels explicitly which filters out irrelevant information. The second one encourages the structure encoder to learn better representations with desired characteristics for all labels which can better handle label imbalance in hierarchical text classification. Experimental results on two benchmark datasets demonstrate the effectiveness of the proposed HTCInfoMax.



References used
https://aclanthology.org/
rate research

Read More

Deep reinforcement learning provides a promising approach for text-based games in studying natural language communication between humans and artificial agents. However, the generalization still remains a big challenge as the agents depend critically on the complexity and variety of training tasks. In this paper, we address this problem by introducing a hierarchical framework built upon the knowledge graph-based RL agent. In the high level, a meta-policy is executed to decompose the whole game into a set of subtasks specified by textual goals, and select one of them based on the KG. Then a sub-policy in the low level is executed to conduct goal-conditioned reinforcement learning. We carry out experiments on games with various difficulty levels and show that the proposed method enjoys favorable generalizability.
Short text classification is a fundamental task in natural language processing. It is hard due to the lack of context information and labeled data in practice. In this paper, we propose a new method called SHINE, which is based on graph neural networ k (GNN), for short text classification. First, we model the short text dataset as a hierarchical heterogeneous graph consisting of word-level component graphs which introduce more semantic and syntactic information. Then, we dynamically learn a short document graph that facilitates effective label propagation among similar short texts. Thus, comparing with existing GNN-based methods, SHINE can better exploit interactions between nodes of the same types and capture similarities between short texts. Extensive experiments on various benchmark short text datasets show that SHINE consistently outperforms state-of-the-art methods, especially with fewer labels.
Contextual representations learned by language models can often encode undesirable attributes, like demographic associations of the users, while being trained for an unrelated target task. We aim to scrub such undesirable attributes and learn fair re presentations while maintaining performance on the target task. In this paper, we present an adversarial learning framework Adversarial Scrubber'' (AdS), to debias contextual representations. We perform theoretical analysis to show that our framework converges without leaking demographic information under certain conditions. We extend previous evaluation techniques by evaluating debiasing performance using Minimum Description Length (MDL) probing. Experimental evaluations on 8 datasets show that AdS generates representations with minimal information about demographic attributes while being maximally informative about the target task.
Continual learning has become increasingly important as it enables NLP models to constantly learn and gain knowledge over time. Previous continual learning methods are mainly designed to preserve knowledge from previous tasks, without much emphasis o n how to well generalize models to new tasks. In this work, we propose an information disentanglement based regularization method for continual learning on text classification. Our proposed method first disentangles text hidden spaces into representations that are generic to all tasks and representations specific to each individual task, and further regularizes these representations differently to better constrain the knowledge required to generalize. We also introduce two simple auxiliary tasks: next sentence prediction and task-id prediction, for learning better generic and specific representation spaces. Experiments conducted on large-scale benchmarks demonstrate the effectiveness of our method in continual text classification tasks with various sequences and lengths over state-of-the-art baselines. We have publicly released our code at https://github.com/GT-SALT/IDBR.
Exploiting label hierarchies has become a promising approach to tackling the zero-shot multi-label text classification (ZS-MTC) problem. Conventional methods aim to learn a matching model between text and labels, using a graph encoder to incorporate label hierarchies to obtain effective label representations (Rios and Kavuluru, 2018). More recently, pretrained models like BERT (Devlin et al., 2018) have been used to convert classification tasks into a textual entailment task (Yin et al., 2019). This approach is naturally suitable for the ZS-MTC task. However, pretrained models are underexplored in the existing work because they do not generate individual vector representations for text or labels, making it unintuitive to combine them with conventional graph encoding methods. In this paper, we explore to improve pretrained models with label hierarchies on the ZS-MTC task. We propose a Reinforced Label Hierarchy Reasoning (RLHR) approach to encourage interdependence among labels in the hierarchies during training. Meanwhile, to overcome the weakness of flat predictions, we design a rollback algorithm that can remove logical errors from predictions during inference. Experimental results on three real-life datasets show that our approach achieves better performance and outperforms previous non-pretrained methods on the ZS-MTC task.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا