Do you want to publish a course? Click here

Challenging distributional models with a conceptual network of philosophical terms

النماذج التوزيعية الصعبة مع شبكة مفاهيمية من المصطلحات الفلسفية

182   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Computational linguistic research on language change through distributional semantic (DS) models has inspired researchers from fields such as philosophy and literary studies, who use these methods for the exploration and comparison of comparatively small datasets traditionally analyzed by close reading. Research on methods for small data is still in early stages and it is not clear which methods achieve the best results. We investigate the possibilities and limitations of using distributional semantic models for analyzing philosophical data by means of a realistic use-case. We provide a ground truth for evaluation created by philosophy experts and a blueprint for using DS models in a sound methodological setup. We compare three methods for creating specialized models from small datasets. Though the models do not perform well enough to directly support philosophers yet, we find that models designed for small data yield promising directions for future work.



References used
https://aclanthology.org/
rate research

Read More

Prior research has explored the ability of computational models to predict a word semantic fit with a given predicate. While much work has been devoted to modeling the typicality relation between verbs and arguments in isolation, in this paper we tak e a broader perspective by assessing whether and to what extent computational approaches have access to the information about the typicality of entire events and situations described in language (Generalized Event Knowledge). Given the recent success of Transformers Language Models (TLMs), we decided to test them on a benchmark for the dynamic estimation of thematic fit. The evaluation of these models was performed in comparison with SDM, a framework specifically designed to integrate events in sentence meaning representations, and we conducted a detailed error analysis to investigate which factors affect their behavior. Our results show that TLMs can reach performances that are comparable to those achieved by SDM. However, additional analysis consistently suggests that TLMs do not capture important aspects of event knowledge, and their predictions often depend on surface linguistic features, such as frequent words, collocations and syntactic patterns, thereby showing sub-optimal generalization abilities.
In this paper we compare the performance of three models: SGNS (skip-gram negative sampling) and augmented versions of SVD (singular value decomposition) and PPMI (Positive Pointwise Mutual Information) on a word similarity task. We particularly focu s on the role of hyperparameter tuning for Hindi based on recommendations made in previous work (on English). Our results show that there are language specific preferences for these hyperparameters. We extend the best settings for Hindi to a set of related languages: Punjabi, Gujarati and Marathi with favourable results. We also find that a suitably tuned SVD model outperforms SGNS for most of our languages and is also more robust in a low-resource setting.
Text simplification is a growing field with many potential useful applications. Training text simplification algorithms generally requires a lot of annotated data, however there are not many corpora suitable for this task. We propose a new unsupervis ed method for aligning text based on Doc2Vec embeddings and a new alignment algorithm, capable of aligning texts at different levels. Initial evaluation shows promising results for the new approach. We used the newly developed approach to create a new monolingual parallel corpus composed of the works of English early modern philosophers and their corresponding simplified versions.
Dialogue-based relation extraction (RE) aims to extract relation(s) between two arguments that appear in a dialogue. Because dialogues have the characteristics of high personal pronoun occurrences and low information density, and since most relationa l facts in dialogues are not supported by any single sentence, dialogue-based relation extraction requires a comprehensive understanding of dialogue. In this paper, we propose the TUrn COntext awaRE Graph Convolutional Network (TUCORE-GCN) modeled by paying attention to the way people understand dialogues. In addition, we propose a novel approach which treats the task of emotion recognition in conversations (ERC) as a dialogue-based RE. Experiments on a dialogue-based RE dataset and three ERC datasets demonstrate that our model is very effective in various dialogue-based natural language understanding tasks. In these experiments, TUCORE-GCN outperforms the state-of-the-art models on most of the benchmark datasets. Our code is available at https://github.com/BlackNoodle/TUCORE-GCN.
To transcribe spoken language to written medium, most alphabets enable an unambiguous sound-to-letter rule. However, some writing systems have distanced themselves from this simple concept and little work exists in Natural Language Processing (NLP) o n measuring such distance. In this study, we use an Artificial Neural Network (ANN) model to evaluate the transparency between written words and their pronunciation, hence its name Orthographic Transparency Estimation with an ANN (OTEANN). Based on datasets derived from Wikimedia dictionaries, we trained and tested this model to score the percentage of false predictions in phoneme-to-grapheme and grapheme-to-phoneme translation tasks. The scores obtained on 17 orthographies were in line with the estimations of other studies. Interestingly, the model also provided insight into typical mistakes made by learners who only consider the phonemic rule in reading and writing.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا