Do you want to publish a course? Click here

Fine-tuning Distributional Semantic Models for Closely-Related Languages

نماذج الدلالات الدلالية التوزيعية دقيقة لغات ذات صلة عن كثب

339   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

In this paper we compare the performance of three models: SGNS (skip-gram negative sampling) and augmented versions of SVD (singular value decomposition) and PPMI (Positive Pointwise Mutual Information) on a word similarity task. We particularly focus on the role of hyperparameter tuning for Hindi based on recommendations made in previous work (on English). Our results show that there are language specific preferences for these hyperparameters. We extend the best settings for Hindi to a set of related languages: Punjabi, Gujarati and Marathi with favourable results. We also find that a suitably tuned SVD model outperforms SGNS for most of our languages and is also more robust in a low-resource setting.



References used
https://aclanthology.org/
rate research

Read More

We present an extended version of a tool developed for calculating linguistic distances and asymmetries in auditory perception of closely related languages. Along with evaluating the metrics available in the initial version of the tool, we introduce word adaptation entropy as an additional metric of linguistic asymmetry. Potential predictors of speech intelligibility are validated with human performance in spoken cognate recognition experiments for Bulgarian and Russian. Special attention is paid to the possibly different contributions of vowels and consonants in oral intercomprehension. Using incom.py 2.0 it is possible to calculate, visualize, and validate three measurement methods of linguistic distances and asymmetries as well as carrying out regression analyses in speech intelligibility between related languages.
The most successful approach to Neural Machine Translation (NMT) when only monolingual training data is available, called unsupervised machine translation, is based on back-translation where noisy translations are generated to turn the task into a su pervised one. However, back-translation is computationally very expensive and inefficient. This work explores a novel, efficient approach to unsupervised NMT. A transformer, initialized with cross-lingual language model weights, is fine-tuned exclusively on monolingual data of the target language by jointly learning on a paraphrasing and denoising autoencoder objective. Experiments are conducted on WMT datasets for German-English, French-English, and Romanian-English. Results are competitive to strong baseline unsupervised NMT models, especially for closely related source languages (German) compared to more distant ones (Romanian, French), while requiring about a magnitude less training time.
Temporal language grounding (TLG) aims to localize a video segment in an untrimmed video based on a natural language description. To alleviate the expensive cost of manual annotations for temporal boundary labels,we are dedicated to the weakly superv ised setting, where only video-level descriptions are provided for training. Most of the existing weakly supervised methods generate a candidate segment set and learn cross-modal alignment through a MIL-based framework. However, the temporal structure of the video as well as the complicated semantics in the sentence are lost during the learning. In this work, we propose a novel candidate-free framework: Fine-grained Semantic Alignment Network (FSAN), for weakly supervised TLG. Instead of view the sentence and candidate moments as a whole, FSAN learns token-by-clip cross-modal semantic alignment by an iterative cross-modal interaction module, generates a fine-grained cross-modal semantic alignment map, and performs grounding directly on top of the map. Extensive experiments are conducted on two widely-used benchmarks: ActivityNet-Captions, and DiDeMo, where our FSAN achieves state-of-the-art performance.
Pre-trained language models (PrLM) have to carefully manage input units when training on a very large text with a vocabulary consisting of millions of words. Previous works have shown that incorporating span-level information over consecutive words i n pre-training could further improve the performance of PrLMs. However, given that span-level clues are introduced and fixed in pre-training, previous methods are time-consuming and lack of flexibility. To alleviate the inconvenience, this paper presents a novel span fine-tuning method for PrLMs, which facilitates the span setting to be adaptively determined by specific downstream tasks during the fine-tuning phase. In detail, any sentences processed by the PrLM will be segmented into multiple spans according to a pre-sampled dictionary. Then the segmentation information will be sent through a hierarchical CNN module together with the representation outputs of the PrLM and ultimately generate a span-enhanced representation. Experiments on GLUE benchmark show that the proposed span fine-tuning method significantly enhances the PrLM, and at the same time, offer more flexibility in an efficient way.
This paper reports the Machine Translation (MT) systems submitted by the IIITT team for the English→Marathi and English⇔Irish language pairs LoResMT 2021 shared task. The task focuses on getting exceptional translations for rather low-resourced langu ages like Irish and Marathi. We fine-tune IndicTrans, a pretrained multilingual NMT model for English→Marathi, using external parallel corpus as input for additional training. We have used a pretrained Helsinki-NLP Opus MT English⇔Irish model for the latter language pair. Our approaches yield relatively promising results on the BLEU metrics. Under the team name IIITT, our systems ranked 1, 1, and 2 in English→Marathi, Irish→English, and English→Irish respectively. The codes for our systems are published1 .

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا