Do you want to publish a course? Click here

Compositional Networks Enable Systematic Generalization for Grounded Language Understanding

تتيح الشبكات التركيبية التعميم المنهجي لفهم اللغة الأساسية

167   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Humans are remarkably flexible when understanding new sentences that include combinations of concepts they have never encountered before. Recent work has shown that while deep networks can mimic some human language abilities when presented with novel sentences, systematic variation uncovers the limitations in the language-understanding abilities of networks. We demonstrate that these limitations can be overcome by addressing the generalization challenges in the gSCAN dataset, which explicitly measures how well an agent is able to interpret novel linguistic commands grounded in vision, e.g., novel pairings of adjectives and nouns. The key principle we employ is compositionality: that the compositional structure of networks should reflect the compositional structure of the problem domain they address, while allowing other parameters to be learned end-to-end. We build a general-purpose mechanism that enables agents to generalize their language understanding to compositional domains. Crucially, our network has the same state-of-the-art performance as prior work while generalizing its knowledge when prior work does not. Our network also provides a level of interpretability that enables users to inspect what each part of networks learns. Robust grounded language understanding without dramatic failures and without corner cases is critical to building safe and fair robots; we demonstrate the significant role that compositionality can play in achieving that goal.

References used
https://aclanthology.org/
rate research

Read More

Abstract We present a new conjunctivist framework, neural event semantics (NES), for compositional grounded language understanding. Our approach treats all words as classifiers that compose to form a sentence meaning by multiplying output scores. The se classifiers apply to spatial regions (events) and NES derives its semantic structure from language by routing events to different classifier argument inputs via soft attention. NES is trainable end-to-end by gradient descent with minimal supervision. We evaluate our method on compositional grounded language tasks in controlled synthetic and real-world settings. NES offers stronger generalization capability than standard function-based compositional frameworks, while improving accuracy over state-of-the-art neural methods on real-world language tasks.
Although neural sequence-to-sequence models have been successfully applied to semantic parsing, they fail at compositional generalization, i.e., they are unable to systematically generalize to unseen compositions of seen components. Motivated by trad itional semantic parsing where compositionality is explicitly accounted for by symbolic grammars, we propose a new decoding framework that preserves the expressivity and generality of sequence-to-sequence models while featuring lexicon-style alignments and disentangled information processing. Specifically, we decompose decoding into two phases where an input utterance is first tagged with semantic symbols representing the meaning of individual words, and then a sequence-to-sequence model is used to predict the final meaning representation conditioning on the utterance and the predicted tag sequence. Experimental results on three semantic parsing datasets show that the proposed approach consistently improves compositional generalization across model architectures, domains, and semantic formalisms.
Standard architectures used in instruction following often struggle on novel compositions of subgoals (e.g. navigating to landmarks or picking up objects) observed during training. We propose a modular architecture for following natural language inst ructions that describe sequences of diverse subgoals. In our approach, subgoal modules each carry out natural language instructions for a specific subgoal type. A sequence of modules to execute is chosen by learning to segment the instructions and predicting a subgoal type for each segment. When compared to standard, non-modular sequence-to-sequence approaches on ALFRED, a challenging instruction following benchmark, we find that modularization improves generalization to novel subgoal compositions, as well as to environments unseen in training.
We present a simple yet effective Targeted Adversarial Training (TAT) algorithm to improve adversarial training for natural language understanding. The key idea is to introspect current mistakes and prioritize adversarial training steps to where the model errs the most. Experiments show that TAT can significantly improve accuracy over standard adversarial training on GLUE and attain new state-of-the-art zero-shot results on XNLI. Our code will be released upon acceptance of the paper.
We describe a span-level supervised attention loss that improves compositional generalization in semantic parsers. Our approach builds on existing losses that encourage attention maps in neural sequence-to-sequence models to imitate the output of cla ssical word alignment algorithms. Where past work has used word-level alignments, we focus on spans; borrowing ideas from phrase-based machine translation, we align subtrees in semantic parses to spans of input sentences, and encourage neural attention mechanisms to mimic these alignments. This method improves the performance of transformers, RNNs, and structured decoders on three benchmarks of compositional generalization.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا