نحن نعمل على تعميم فكرة قياس التحيزات الاجتماعية في Word Ageddings لإضاءة Word بصريا. الحياز موجودة في المدينات المتطرفة، ويبدو أنها بالفعل أكثر أهمية أو أكثر أهمية من المدمج غير المقصود. هذا على الرغم من حقيقة أن الرؤية واللغة يمكن أن تعاني من تحيزات مختلفة، والذي قد يأمل المرء أن يخفف من التحيزات في كليهما. توجد طرق متعددة لتعميم التحيز القياسي القياسي في Word Ageddings لهذا الإعداد الجديد. نقدم مساحة التعميمات (Weat-Weat-Weat and Grounded) وإظهار أن ثلاث تعميمات تجيب على أسئلة مختلفة لكنها مهمة حول كيفية تفاعل التحيزات واللغة والرؤية. يتم استخدام هذه المقاييس في مجموعة بيانات جديدة، الأول من أجل التحيز الأساسي، الذي تم إنشاؤه عن طريق زيادة معايير التحيز اللغوي القياسي مع 10228 صورة من كوكو، والتسمية التوضيحية المفاهيمية، وصور جوجل. بناء البيانات يتحدى لأن مجموعات بيانات الرؤية هي نفسها منحازة للغاية. سيبدأ وجود هذه التحيزات في الأنظمة في الحصول على عواقب عالمية حقيقية حيث يتم نشرها، مما يجعلها تقيس التحيز بعناية ثم تخفيفها بالغ الأهمية لبناء مجتمع عادل.
We generalize the notion of measuring social biases in word embeddings to visually grounded word embeddings. Biases are present in grounded embeddings, and indeed seem to be equally or more significant than for ungrounded embeddings. This is despite the fact that vision and language can suffer from different biases, which one might hope could attenuate the biases in both. Multiple ways exist to generalize metrics measuring bias in word embeddings to this new setting. We introduce the space of generalizations (Grounded-WEAT and Grounded-SEAT) and demonstrate that three generalizations answer different yet important questions about how biases, language, and vision interact. These metrics are used on a new dataset, the first for grounded bias, created by augmenting standard linguistic bias benchmarks with 10,228 images from COCO, Conceptual Captions, and Google Images. Dataset construction is challenging because vision datasets are themselves very biased. The presence of these biases in systems will begin to have real-world consequences as they are deployed, making carefully measuring bias and then mitigating it critical to building a fair society.
References used
https://aclanthology.org/
Biases continue to be prevalent in modern text and media, especially subjective bias -- a special type of bias that introduces improper attitudes or presents a statement with the presupposition of truth. To tackle the problem of detecting and further
Abstract Measuring bias is key for better understanding and addressing unfairness in NLP/ML models. This is often done via fairness metrics, which quantify the differences in a model's behaviour across a range of demographic groups. In this work, we
Phrase grounding aims to map textual phrases to their associated image regions, which can be a prerequisite for multimodal reasoning and can benefit tasks requiring identifying objects based on language. With pre-trained vision-and-language models ac
Word embeddings are widely used in Natural Language Processing (NLP) for a vast range of applications. However, it has been consistently proven that these embeddings reflect the same human biases that exist in the data used to train them. Most of the
Automatic detection of toxic language plays an essential role in protecting social media users, especially minority groups, from verbal abuse. However, biases toward some attributes, including gender, race, and dialect, exist in most training dataset