تحيز قياس التجريدي هو المفتاح لفهم أفضل ومعالجة الظلم في نماذج NLP / ML.غالبا ما يتم ذلك عبر مقاييس الإنصاف، مما يحدد الاختلافات في سلوك النموذج عبر مجموعة من المجموعات الديموغرافية.في هذا العمل، ألقينا المزيد من الضوء على الاختلافات وتشابه التشابه بين مقاييس الإنصاف المستخدمة في NLP.أولا، نقوم بتوحيد مجموعة واسعة من المقاييس الموجودة بموجب ثلاثة مقاييس المعرفة المعممة، وكشف عن الاتصالات بينهما.بعد ذلك، نقوم بإجراء مقارنة تجريبية واسعة النطاق للمقاييس الموجودة وإظهار أن الاختلافات المرصودة في قياس التحيز يمكن تفسيرها بشكل منهجي عبر الاختلافات في خيارات المعلمات لمقاييسنا المعمم.
Abstract Measuring bias is key for better understanding and addressing unfairness in NLP/ML models. This is often done via fairness metrics, which quantify the differences in a model's behaviour across a range of demographic groups. In this work, we shed more light on the differences and similarities between the fairness metrics used in NLP. First, we unify a broad range of existing metrics under three generalized fairness metrics, revealing the connections between them. Next, we carry out an extensive empirical comparison of existing metrics and demonstrate that the observed differences in bias measurement can be systematically explained via differences in parameter choices for our generalized metrics.
References used
https://aclanthology.org/
We generalize the notion of measuring social biases in word embeddings to visually grounded word embeddings. Biases are present in grounded embeddings, and indeed seem to be equally or more significant than for ungrounded embeddings. This is despite
Humans can learn a new language task efficiently with only few examples, by leveraging their knowledge obtained when learning prior tasks. In this paper, we explore whether and how such cross-task generalization ability can be acquired, and further a
Online social media platforms increasingly rely on Natural Language Processing (NLP) techniques to detect abusive content at scale in order to mitigate the harms it causes to their users. However, these techniques suffer from various sampling and ass
The field of NLP has made substantial progress in building meaning representations. However, an important aspect of linguistic meaning, social meaning, has been largely overlooked. We introduce the concept of social meaning to NLP and discuss how insights from sociolinguistics can inform work on representation learning in NLP. We also identify key challenges for this new line of research.
NLP systems rarely give special consideration to numbers found in text. This starkly contrasts with the consensus in neuroscience that, in the brain, numbers are represented differently from words. We arrange recent NLP work on numeracy into a compre