Do you want to publish a course? Click here

Enhancing Factual Consistency of Abstractive Summarization

تعزيز الاتساق الواقعي لتلخيص الجماعي

301   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Automatic abstractive summaries are found to often distort or fabricate facts in the article. This inconsistency between summary and original text has seriously impacted its applicability. We propose a fact-aware summarization model FASum to extract and integrate factual relations into the summary generation process via graph attention. We then design a factual corrector model FC to automatically correct factual errors from summaries generated by existing systems. Empirical results show that the fact-aware summarization can produce abstractive summaries with higher factual consistency compared with existing systems, and the correction model improves the factual consistency of given summaries via modifying only a few keywords.



References used
https://aclanthology.org/
rate research

Read More

Neural abstractive summarization systems have gained significant progress in recent years. However, abstractive summarization often produce inconsisitent statements or false facts. How to automatically generate highly abstract yet factually correct s ummaries? In this paper, we proposed an efficient weak-supervised adversarial data augmentation approach to form the factual consistency dataset. Based on the artificial dataset, we train an evaluation model that can not only make accurate and robust factual consistency discrimination but is also capable of making interpretable factual errors tracing by backpropagated gradient distribution on token embeddings. Experiments and analysis conduct on public annotated summarization and factual consistency datasets demonstrate our approach effective and reasonable.
Factual inconsistencies existed in the output of abstractive summarization models with original documents are frequently presented. Fact consistency assessment requires the reasoning capability to find subtle clues to identify whether a model-generat ed summary is consistent with the original document. This paper proposes a fine-grained two-stage Fact Consistency assessment framework for Summarization models (SumFC). Given a document and a summary sentence, in the first stage, SumFC selects the top-K most relevant sentences with the summary sentence from the document. In the second stage, the model performs fine-grained consistency reasoning at the sentence level, and then aggregates all sentences' consistency scores to obtain the final assessment result. We get the training data pairs by data synthesis and adopt contrastive loss of data pairs to help the model identify subtle cues. Experiment results show that SumFC has made a significant improvement over the previous state-of-the-art methods. Our experiments also indicate that SumFC distinguishes detailed differences better.
In this paper, we focus on improving the quality of the summary generated by neural abstractive dialogue summarization systems. Even though pre-trained language models generate well-constructed and promising results, it is still challenging to summar ize the conversation of multiple participants since the summary should include a description of the overall situation and the actions of each speaker. This paper proposes self-supervised strategies for speaker-focused post-correction in abstractive dialogue summarization. Specifically, our model first discriminates which type of speaker correction is required in a draft summary and then generates a revised summary according to the required type. Experimental results show that our proposed method adequately corrects the draft summaries, and the revised summaries are significantly improved in both quantitative and qualitative evaluations.
The paper describes a system for automatic summarization in English language of online news data that come from different non-English languages. The system is designed to be used in production environment for media monitoring. Automatic summarization can be very helpful in this domain when applied as a helper tool for journalists so that they can review just the important information from the news channels. However, like every software solution, the automatic summarization needs performance monitoring and assured safe environment for the clients. In media monitoring environment the most problematic features to be addressed are: the copyright issues, the factual consistency, the style of the text and the ethical norms in journalism. Thus, the main contribution of our present work is that the above mentioned characteristics are successfully monitored in neural automatic summarization models and improved with the help of validation, fact-preserving and fact-checking procedures.
Large scale pretrained models have demonstrated strong performances on several natural language generation and understanding benchmarks. However, introducing commonsense into them to generate more realistic text remains a challenge. Inspired from pre vious work on commonsense knowledge generation and generative commonsense reasoning, we introduce two methods to add commonsense reasoning skills and knowledge into abstractive summarization models. Both methods beat the baseline on ROUGE scores, demonstrating the superiority of our models over the baseline. Human evaluation results suggest that summaries generated by our methods are more realistic and have fewer commonsensical errors.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا