تصف الورقة نظام تلخيص تلقائي باللغة الإنجليزية لبيانات الأخبار عبر الإنترنت التي تأتي من لغات مختلفة غير الإنجليزية.تم تصميم النظام لاستخدامه في بيئة الإنتاج لمراقبة الوسائط.يمكن أن تكون التلخيص التلقائي مفيدة للغاية في هذا المجال عند تطبيقها كأداة مساعد للصحفيين حتى يتمكنوا من مراجعة المعلومات المهمة فقط من قنوات الأخبار.ومع ذلك، مثل كل حل البرمجيات، يحتاج الملخص التلقائي إلى مراقبة الأداء والبيئة الآمنة المؤمنة للعملاء.في بيئة مراقبة وسائل الإعلام هي أكثر السمات إشكالية يجب معالجتها هي: قضايا حقوق الطبع والنشر، الاتساق الواقعي، أسلوب النص والمعايير الأخلاقية في الصحافة.وبالتالي، فإن المساهمة الرئيسية لعملنا الحالي هي أن الخصائص المذكورة أعلاه مراقبة بنجاح في نماذج تلخيص تلقائية عصبية وتحسينها بمساعدة إجراءات التحقق من الصحة والحفاظ على الحقائق وفحص الحقائق.
The paper describes a system for automatic summarization in English language of online news data that come from different non-English languages. The system is designed to be used in production environment for media monitoring. Automatic summarization can be very helpful in this domain when applied as a helper tool for journalists so that they can review just the important information from the news channels. However, like every software solution, the automatic summarization needs performance monitoring and assured safe environment for the clients. In media monitoring environment the most problematic features to be addressed are: the copyright issues, the factual consistency, the style of the text and the ethical norms in journalism. Thus, the main contribution of our present work is that the above mentioned characteristics are successfully monitored in neural automatic summarization models and improved with the help of validation, fact-preserving and fact-checking procedures.
References used
https://aclanthology.org/
Neural abstractive summarization systems have gained significant progress in recent years. However, abstractive summarization often produce inconsisitent statements or false facts. How to automatically generate highly abstract yet factually correct s
Automatic abstractive summaries are found to often distort or fabricate facts in the article. This inconsistency between summary and original text has seriously impacted its applicability. We propose a fact-aware summarization model FASum to extract
A crucial difference between single- and multi-document summarization is how salient content manifests itself in the document(s). While such content may appear at the beginning of a single document, essential information is frequently reiterated in a
State-of-the-art abstractive summarization models generally rely on extensive labeled data, which lowers their generalization ability on domains where such data are not available. In this paper, we present a study of domain adaptation for the abstrac
Abstractive summarization, the task of generating a concise summary of input documents, requires: (1) reasoning over the source document to determine the salient pieces of information scattered across the long document, and (2) composing a cohesive t