Do you want to publish a course? Click here

Preregistering NLP research

Prergistering NLP Research.

251   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Preregistration refers to the practice of specifying what you are going to do, and what you expect to find in your study, before carrying out the study. This practice is increasingly common in medicine and psychology, but is rarely discussed in NLP. This paper discusses preregistration in more detail, explores how NLP researchers could preregister their work, and presents several preregistration questions for different kinds of studies. Finally, we argue in favour of registered reports, which could provide firmer grounds for slow science in NLP research. The goal of this paper is to elicit a discussion in the NLP community, which we hope to synthesise into a general NLP preregistration form in future research.

References used
https://aclanthology.org/
rate research

Read More

Natural language processing (NLP) research combines the study of universal principles, through basic science, with applied science targeting specific use cases and settings. However, the process of exchange between basic NLP and applications is often assumed to emerge naturally, resulting in many innovations going unapplied and many important questions left unstudied. We describe a new paradigm of Translational NLP, which aims to structure and facilitate the processes by which basic and applied NLP research inform one another. Translational NLP thus presents a third research paradigm, focused on understanding the challenges posed by application needs and how these challenges can drive innovation in basic science and technology design. We show that many significant advances in NLP research have emerged from the intersection of basic principles with application needs, and present a conceptual framework outlining the stakeholders and key questions in translational research. Our framework provides a roadmap for developing Translational NLP as a dedicated research area, and identifies general translational principles to facilitate exchange between basic and applied research.
Research in Natural Language Processing is making rapid advances, resulting in the publication of a large number of research papers. Finding relevant research papers and their contribution to the domain is a challenging problem. In this paper, we add ress this challenge via the SemEval 2021 Task 11: NLPContributionGraph, by developing a system for a research paper contributions-focused knowledge graph over Natural Language Processing literature. The task is divided into three sub-tasks: extracting contribution sentences that show important contributions in the research article, extracting phrases from the contribution sentences, and predicting the information units in the research article together with triplet formation from the phrases. The proposed system is agnostic to the subject domain and can be applied for building a knowledge graph for any area. We found that transformer-based language models can significantly improve existing techniques and utilized the SciBERT-based model. Our first sub-task uses Bidirectional LSTM (BiLSTM) stacked on top of SciBERT model layers, while the second sub-task uses Conditional Random Field (CRF) on top of SciBERT with BiLSTM. The third sub-task uses a combined SciBERT based neural approach with heuristics for information unit prediction and triplet formation from the phrases. Our system achieved F1 score of 0.38, 0.63 and 0.76 in end-to-end pipeline testing, phrase extraction testing and triplet extraction testing respectively.
We present a set of assignments for a graduate-level NLP course. Assignments are designed to be interactive, easily gradable, and to give students hands-on experience with several key types of structure (sequences, tags, parse trees, and logical form s), modern neural architectures (LSTMs and Transformers), inference algorithms (dynamic programs and approximate search) and training methods (full and weak supervision). We designed assignments to build incrementally both within each assignment and across assignments, with the goal of enabling students to undertake graduate-level research in NLP by the end of the course.
In this tutorial, we aim at bringing interested NLP researchers up to speed about the recent and ongoing techniques for document-level representation learning. Additionally, our goal is to reveal new research opportunities to the audience, which will hopefully bring us closer to address existing challenges in this domain.
We introduce Dynabench, an open-source platform for dynamic dataset creation and model benchmarking. Dynabench runs in a web browser and supports human-and-model-in-the-loop dataset creation: annotators seek to create examples that a target model wil l misclassify, but that another person will not. In this paper, we argue that Dynabench addresses a critical need in our community: contemporary models quickly achieve outstanding performance on benchmark tasks but nonetheless fail on simple challenge examples and falter in real-world scenarios. With Dynabench, dataset creation, model development, and model assessment can directly inform each other, leading to more robust and informative benchmarks. We report on four initial NLP tasks, illustrating these concepts and highlighting the promise of the platform, and address potential objections to dynamic benchmarking as a new standard for the field.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا