غالبا ما يستخدم النماذج العصبية لتحقيق القدرة على أداء مهام المصب باستخدام أنماط التنشيط الخاصة بهم غالبا ما تستخدم أجزاء الشبكة المتخصصة في أداء المهام.ومع ذلك، فإن القليل من العمل موجه عوامل الوساطة المحتملة في هذه المقارنات.كعامل توسط في حالة الاختبار، ننظر إلى طول سياق التنبؤ، أي طول الفترة التي تكون معالجتها مطلوبة في الحد الأدنى لأداء التنبؤ.نظرا لأن عدم السيطرة على طول السياق قد يؤدي إلى استنتاجات متناقضة فيما يتعلق بأنماط التوطين للشبكة، اعتمادا على توزيع بيانات التحقيق.في الواقع، عند التحقيق في بيرت مع سبع مهام، نجد أنه من الممكن الحصول على 196 تصنيفا مختلفا بينهما عند التعامل مع توزيع أطوال السياق في مجموعة بيانات التحقيق.نستنتج عن طريق تقديم أفضل الممارسات لإجراء هذه المقارنات في المستقبل.
Probing neural models for the ability to perform downstream tasks using their activation patterns is often used to localize what parts of the network specialize in performing what tasks. However, little work addressed potential mediating factors in such comparisons. As a test-case mediating factor, we consider the prediction's context length, namely the length of the span whose processing is minimally required to perform the prediction. We show that not controlling for context length may lead to contradictory conclusions as to the localization patterns of the network, depending on the distribution of the probing dataset. Indeed, when probing BERT with seven tasks, we find that it is possible to get 196 different rankings between them when manipulating the distribution of context lengths in the probing dataset. We conclude by presenting best practices for conducting such comparisons in the future.
References used
https://aclanthology.org/
Natural conversations are filled with disfluencies. This study investigates if and how BERT understands disfluency with three experiments: (1) a behavioural study using a downstream task, (2) an analysis of sentence embeddings and (3) an analysis of
Machine reading comprehension (MRC) is a challenging NLP task for it requires to carefully deal with all linguistic granularities from word, sentence to passage. For extractive MRC, the answer span has been shown mostly determined by key evidence lin
The last years have shown rapid developments in the field of multimodal machine learning, combining e.g., vision, text or speech. In this position paper we explain how the field uses outdated definitions of multimodality that prove unfit for the mach
Transformer-based models have become the de facto standard in the field of Natural Language Processing (NLP). By leveraging large unlabeled text corpora, they enable efficient transfer learning leading to state-of-the-art results on numerous NLP task