Do you want to publish a course? Click here

Mediators in Determining what Processing BERT Performs First

الوسطاء في تحديد ما يجري برت ينفذ أولا

295   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Probing neural models for the ability to perform downstream tasks using their activation patterns is often used to localize what parts of the network specialize in performing what tasks. However, little work addressed potential mediating factors in such comparisons. As a test-case mediating factor, we consider the prediction's context length, namely the length of the span whose processing is minimally required to perform the prediction. We show that not controlling for context length may lead to contradictory conclusions as to the localization patterns of the network, depending on the distribution of the probing dataset. Indeed, when probing BERT with seven tasks, we find that it is possible to get 196 different rankings between them when manipulating the distribution of context lengths in the probing dataset. We conclude by presenting best practices for conducting such comparisons in the future.



References used
https://aclanthology.org/
rate research

Read More

Natural conversations are filled with disfluencies. This study investigates if and how BERT understands disfluency with three experiments: (1) a behavioural study using a downstream task, (2) an analysis of sentence embeddings and (3) an analysis of the attention mechanism on disfluency. The behavioural study shows that without fine-tuning on disfluent data, BERT does not suffer significant performance loss when presented disfluent compared to fluent inputs (exp1). Analysis on sentence embeddings of disfluent and fluent sentence pairs reveals that the deeper the layer, the more similar their representation (exp2). This indicates that deep layers of BERT become relatively invariant to disfluency. We pinpoint attention as a potential mechanism that could explain this phenomenon (exp3). Overall, the study suggests that BERT has knowledge of disfluency structure. We emphasise the potential of using BERT to understand natural utterances without disfluency removal.
Machine reading comprehension (MRC) is a challenging NLP task for it requires to carefully deal with all linguistic granularities from word, sentence to passage. For extractive MRC, the answer span has been shown mostly determined by key evidence lin guistic units, in which it is a sentence in most cases. However, we recently discovered that sentences may not be clearly defined in many languages to different extents, so that this causes so-called location unit ambiguity problem and as a result makes it difficult for the model to determine which sentence exactly contains the answer span when sentence itself has not been clearly defined at all. Taking Chinese language as a case study, we explain and analyze such a linguistic phenomenon and correspondingly propose a reader with Explicit Span-Sentence Predication to alleviate such a problem. Our proposed reader eventually helps achieve a new state-of-the-art on Chinese MRC benchmark and shows great potential in dealing with other languages.
The last years have shown rapid developments in the field of multimodal machine learning, combining e.g., vision, text or speech. In this position paper we explain how the field uses outdated definitions of multimodality that prove unfit for the mach ine learning era. We propose a new task-relative definition of (multi)modality in the context of multimodal machine learning that focuses on representations and information that are relevant for a given machine learning task. With our new definition of multimodality we aim to provide a missing foundation for multimodal research, an important component of language grounding and a crucial milestone towards NLU.
Transformer-based models have become the de facto standard in the field of Natural Language Processing (NLP). By leveraging large unlabeled text corpora, they enable efficient transfer learning leading to state-of-the-art results on numerous NLP task s. Nevertheless, for low resource languages and highly specialized tasks, transformer models tend to lag behind more classical approaches (e.g. SVM, LSTM) due to the lack of aforementioned corpora. In this paper we focus on the legal domain and we introduce a Romanian BERT model pre-trained on a large specialized corpus. Our model outperforms several strong baselines for legal judgement prediction on two different corpora consisting of cases from trials involving banks in Romania.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا