نقترح حساب احتمامي للتناسم الدلالي والتصنيف المصنوع من حيث نظرية النوع الاحتمالية مع السجلات، والبناء على كوبر وآخرون.آل.(2014) وكوبر وآخرون.آل.(2015).نقترح أن نقترح تركيبات نظرية من النوع الاحتمالية من أسلاك بايس، وشبكات بايزيان.العنصر المركزي في هذه المنشآت هو نسخة نظرية من النوع من متغير عشوائي.نوضح هذا الحساب مع لعبة لغة بسيطة تجمع بين التصنيف الاحتمالي للمدخلات الإحصائية مع الاستدلال الاحتمالية (الدلالي).
We propose a probabilistic account of semantic inference and classification formulated in terms of probabilistic type theory with records, building on Cooper et. al. (2014) and Cooper et. al. (2015). We suggest probabilistic type theoretic formulations of Naive Bayes Classifiers and Bayesian Networks. A central element of these constructions is a type-theoretic version of a random variable. We illustrate this account with a simple language game combining probabilistic classification of perceptual input with probabilistic (semantic) inference.
References used
https://aclanthology.org/
Starting from an existing account of semantic classification and learning from interaction formulated in a Probabilistic Type Theory with Records, encompassing Bayesian inference and learning with a frequentist flavour, we observe some problems with
Formal semantics in the Montagovian tradition provides precise meaning characterisations, but usually without a formal theory of the pragmatics of contextual parameters and their sensitivity to background knowledge. Meanwhile, formal pragmatic theori
Emotion Classification is the task of automatically associating a text with a human emotion. State-of-the-art models are usually learned using annotated corpora or rely on hand-crafted affective lexicons. We present an emotion classification model th
Pimentel et al. (2020) recently analysed probing from an information-theoretic perspective. They argue that probing should be seen as approximating a mutual information. This led to the rather unintuitive conclusion that representations encode exactl
Recent progress in language modeling has been driven not only by advances in neural architectures, but also through hardware and optimization improvements. In this paper, we revisit the neural probabilistic language model (NPLM) of Bengio et al. (200