التصنيف العاطفي هو مهمة ربط النص تلقائيا بمشاعر بشرية.عادة ما يتم تعلم النماذج من أحدث النماذج باستخدام كورسا المشروح أو الاعتماد على المعجم العاطفي المصنوعة يدويا.نقدم نموذج تصنيف العاطفة لا يتطلب أن تكون كوربوس مشروحة كبيرة تنافسية.نقوم بتجربة نماذج اللغة المسبقة مسبقا في كل من طلقة صفرية وعدد قليل من التكوين.نبني العديد من هذه النماذج ونظرا لهم بأنها متحيزة، صاخبة صاخبة، أدائها الفردي ضعيف.نحن نكمل تنبؤات هذه النماذج باستخدام طريقة بايزي تطورت أصلا لشرائيات النمذجة الجماعية.بعد ذلك، نظهر أن النظام الناتج يؤدي أفضل من أقوى النموذج الفردي.أخيرا، نظهر أنه عند التدريب على عدد قليل من البيانات المسمى، تتفوق أنظمتنا النماذج الخاضعة للإشراف بالكامل.
Emotion Classification is the task of automatically associating a text with a human emotion. State-of-the-art models are usually learned using annotated corpora or rely on hand-crafted affective lexicons. We present an emotion classification model that does not require a large annotated corpus to be competitive. We experiment with pretrained language models in both a zero-shot and few-shot configuration. We build several of such models and consider them as biased, noisy annotators, whose individual performance is poor. We aggregate the predictions of these models using a Bayesian method originally developed for modelling crowdsourced annotations. Next, we show that the resulting system performs better than the strongest individual model. Finally, we show that when trained on few labelled data, our systems outperform fully-supervised models.
References used
https://aclanthology.org/
Natural Language Processing (NLP) is increasingly relying on general end-to-end systems that need to handle many different linguistic phenomena and nuances. For example, a Natural Language Inference (NLI) system has to recognize sentiment, handle num
Humans can distinguish new categories very efficiently with few examples, largely due to the fact that human beings can leverage knowledge obtained from relevant tasks. However, deep learning based text classification model tends to struggle to achie
In this paper we present a system that exploits different pre-trained Language Models for assigning domain labels to WordNet synsets without any kind of supervision. Furthermore, the system is not restricted to use a particular set of domain labels.
Recent progress in language modeling has been driven not only by advances in neural architectures, but also through hardware and optimization improvements. In this paper, we revisit the neural probabilistic language model (NPLM) of Bengio et al. (200
Meta learning aims to optimize the model's capability to generalize to new tasks and domains. Lacking a data-efficient way to create meta training tasks has prevented the application of meta-learning to the real-world few shot learning scenarios. Rec