Do you want to publish a course? Click here

Measuring Similarity of Opinion-bearing Sentences

قياس التشابه من الجمل تحمل الرأي

532   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

For many NLP applications of online reviews, comparison of two opinion-bearing sentences is key. We argue that, while general purpose text similarity metrics have been applied for this purpose, there has been limited exploration of their applicability to opinion texts. We address this gap in the literature, studying: (1) how humans judge the similarity of pairs of opinion-bearing sentences; and, (2) the degree to which existing text similarity metrics, particularly embedding-based ones, correspond to human judgments. We crowdsourced annotations for opinion sentence pairs and our main findings are: (1) annotators tend to agree on whether or not opinion sentences are similar or different; and (2) embedding-based metrics capture human judgments of opinion similarity'' but not opinion difference''. Based on our analysis, we identify areas where the current metrics should be improved. We further propose to learn a similarity metric for opinion similarity via fine-tuning the Sentence-BERT sentence-embedding network based on review text and weak supervision by review ratings. Experiments show that our learned metric outperforms existing text similarity metrics and especially show significantly higher correlations with human annotations for differing opinions.



References used
https://aclanthology.org/
rate research

Read More

Word embeddings are widely used in Natural Language Processing (NLP) for a vast range of applications. However, it has been consistently proven that these embeddings reflect the same human biases that exist in the data used to train them. Most of the introduced bias indicators to reveal word embeddings' bias are average-based indicators based on the cosine similarity measure. In this study, we examine the impacts of different similarity measures as well as other descriptive techniques than averaging in measuring the biases of contextual and non-contextual word embeddings. We show that the extent of revealed biases in word embeddings depends on the descriptive statistics and similarity measures used to measure the bias. We found that over the ten categories of word embedding association tests, Mahalanobis distance reveals the smallest bias, and Euclidean distance reveals the largest bias in word embeddings. In addition, the contextual models reveal less severe biases than the non-contextual word embedding models.
Text Similarity is an important task in several application fields, such as information retrieval, plagiarism detection, machine translation, topic detection, text classification, text summarization and others. Finding similarity between two texts, p aragraphs or sentences, is based on measuring, directly or indirectly, the similarity between words. There are two known types of words similarity: lexical and semantic. The first one handles the words as a stream of characters: words are similar lexically if they share the same characters in the same order. The second type aims to quantify the degree to which two words are semantically related. As an example they can be, synonyms, represent the same thing or they are used in the same context. In this article we focus our investigation on measuring the semantic similarity between Arabic sentences using several representations
In this tutorial, we will show where we are and where we will be to those researchers interested in this topic. We divide this tutorial into three parts, including coarse-grained financial opinion mining, fine-grained financial opinion mining, and po ssible research directions. This tutorial starts by introducing the components in a financial opinion proposed in our research agenda and summarizes their related studies. We also highlight the task of mining customers' opinions toward financial services in the FinTech industry, and compare them with usual opinions. Several potential research questions will be addressed. We hope the audiences of this tutorial will gain an overview of financial opinion mining and figure out their research directions.
Document alignment techniques based on multilingual sentence representations have recently shown state of the art results. However, these techniques rely on unsupervised distance measurement techniques, which cannot be fined-tuned to the task at hand . In this paper, instead of these unsupervised distance measurement techniques, we employ Metric Learning to derive task-specific distance measurements. These measurements are supervised, meaning that the distance measurement metric is trained using a parallel dataset. Using a dataset belonging to English, Sinhala, and Tamil, which belong to three different language families, we show that these task-specific supervised distance learning metrics outperform their unsupervised counterparts, for document alignment.
The amount of information available online can be overwhelming for users to digest, specially when dealing with other users' comments when making a decision about buying a product or service. In this context, opinion summarization systems are of grea t value, extracting important information from the texts and presenting them to the user in a more understandable manner. It is also known that the usage of semantic representations can benefit the quality of the generated summaries. This paper aims at developing opinion summarization methods based on Abstract Meaning Representation of texts in the Brazilian Portuguese language. Four different methods have been investigated, alongside some literature approaches. The results show that a Machine Learning-based method produced summaries of higher quality, outperforming other literature techniques on manually constructed semantic graphs. We also show that using parsed graphs over manually annotated ones harmed the output. Finally, an analysis of how important different types of information are for the summarization process suggests that using Sentiment Analysis features did not improve summary quality.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا