تقيم هذه الدراسة ما إذا كان يمكن استخدام خوارزميات الترشيح التعاونية التعاونية النموذجية (CF)، والتي تمت دراستها على نطاق واسع وتستخدم على نطاق واسع لبناء أنظمة التوصية، للتنبؤ بالأسماء المشتركة التي يمكن أن تتخذها المسند ككمل لها. نجد أنه عند تدريب البيانات المشتركة في الفعل الفعل المنسق من كوربوس الأمريكيين المعاصرين - الإنجليزية (COCA)، اثنين من خوارزميات CF شعبية تعتمد على النموذج، وتحلل القيمة المفرد وعوامل مصفوفة غير سلبية، تؤدي بشكل جيد في هذه المهمة ، يحقق كل منها AUROC من 0.89 على الأقل وتجاوز العديد من خطوط الأساس المختلفة. نوضح بعد ذلك أن ناقلات التضمين للأفعال والأسماء المستفادة من طرازات CF يمكن قياسها (عبر تطبيق K- يعني التجميع) مع الحد الأدنى من فقدان الأداء في مهمة التنبؤ مع استخدام عدد صغير فقط من الأفعال والأسماء (بالنسبة لعدد الأفعال والأسماء المتميزة). أخيرا، نقيم المحاذاة بين ناقلات التضمين الكمي للأفعال وفئات الفعل ليفين، وتجدر عن أن المحاذاة تجاوزت العديد من خطوط الأساس العشوائية. نستنتج عن طريق مناقشة كيفية تطبيق خوارزميات CF النموذجية القائمة على قيود التعلم على الاختيار المكونات بين مختلف الفئات المعجمية وكيف يمكن بعد ذلك استخدام هذه النماذج (المستفادة) لزيادة قواعد الدائرة الانتخابية (القاعدة).
This study evaluates whether model-based Collaborative Filtering (CF) algorithms, which have been extensively studied and widely used to build recommender systems, can be used to predict which common nouns a predicate can take as its complement. We find that, when trained on verb-noun co-occurrence data drawn from the Corpus of Contemporary American-English (COCA), two popular model-based CF algorithms, Singular Value Decomposition and Non-negative Matrix Factorization, perform well on this task, each achieving an AUROC of at least 0.89 and surpassing several different baselines. We then show that the embedding-vectors for verbs and nouns learned by the two CF models can be quantized (via application of k-means clustering) with minimal loss of performance on the prediction task while only using a small number of verb and noun clusters (relative to the number of distinct verbs and nouns). Finally we evaluate the alignment between the quantized embedding vectors for verbs and the Levin verb classes, finding that the alignment surpassed several randomized baselines. We conclude by discussing how model-based CF algorithms might be applied to learning restrictions on constituent selection between various lexical categories and how these (learned) models could then be used to augment a (rule-based) constituency grammar.
References used
https://aclanthology.org/
This research aimed to study the lengths effect of calculated filter- operator
by inverse filtering on the seismic data filtering. All programs used for
estimating the seismic signal, calculate the Filter- operator and performing the
Convolution w
In this paper, we focus on identifying interactive argument pairs from two posts with opposite stances to a certain topic. Considering opinions are exchanged from different perspectives of the discussing topic, we study the discrete representations f
An ideal integration of autonomous agents in a human world implies that they are able to collaborate on human terms. In particular, theory of mind plays an important role in maintaining common ground during human collaboration and communication. To e
Most reinforcement learning methods for dialog policy learning train a centralized agent that selects a predefined joint action concatenating domain name, intent type, and slot name. The centralized dialog agent suffers from a great many user-agent i
Accurate recovery of predicate-argument structure from a Universal Dependency (UD) parse is central to downstream tasks such as extraction of semantic roles or event representations. This study introduces compchains, a categorization of the hierarchy