Do you want to publish a course? Click here

GMH: A General Multi-hop Reasoning Model for KG Completion

GMH: نموذج منطق متعدد القفز العام لإنجاز KG

365   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Knowledge graphs are essential for numerous downstream natural language processing applications, but are typically incomplete with many facts missing. This results in research efforts on multi-hop reasoning task, which can be formulated as a search process and current models typically perform short distance reasoning. However, the long-distance reasoning is also vital with the ability to connect the superficially unrelated entities. To the best of our knowledge, there lacks a general framework that approaches multi-hop reasoning in mixed long-short distance reasoning scenarios. We argue that there are two key issues for a general multi-hop reasoning model: i) where to go, and ii) when to stop. Therefore, we propose a general model which resolves the issues with three modules: 1) the local-global knowledge module to estimate the possible paths, 2) the differentiated action dropout module to explore a diverse set of paths, and 3) the adaptive stopping search module to avoid over searching. The comprehensive results on three datasets demonstrate the superiority of our model with significant improvements against baselines in both short and long distance reasoning scenarios.



References used
https://aclanthology.org/
rate research

Read More

Recently Graph Neural Network (GNN) has been used as a promising tool in multi-hop question answering task. However, the unnecessary updations and simple edge constructions prevent an accurate answer span extraction in a more direct and interpretable way. In this paper, we propose a novel model of Breadth First Reasoning Graph (BFR-Graph), which presents a new message passing way that better conforms to the reasoning process. In BFR-Graph, the reasoning message is required to start from the question node and pass to the next sentences node hop by hop until all the edges have been passed, which can effectively prevent each node from over-smoothing or being updated multiple times unnecessarily. To introduce more semantics, we also define the reasoning graph as a weighted graph with considering the number of co-occurrence entities and the distance between sentences. Then we present a more direct and interpretable way to aggregate scores from different levels of granularity based on the GNN. On HotpotQA leaderboard, the proposed BFR-Graph achieves state-of-the-art on answer span prediction.
Despite the success of neural dialogue systems in achieving high performance on the leader-board, they cannot meet users' requirements in practice, due to their poor reasoning skills. The underlying reason is that most neural dialogue models only cap ture the syntactic and semantic information, but fail to model the logical consistency between the dialogue history and the generated response. Recently, a new multi-turn dialogue reasoning task has been proposed, to facilitate dialogue reasoning research. However, this task is challenging, because there are only slight differences between the illogical response and the dialogue history. How to effectively solve this challenge is still worth exploring. This paper proposes a Fine-grained Comparison Model (FCM) to tackle this problem. Inspired by human's behavior in reading comprehension, a comparison mechanism is proposed to focus on the fine-grained differences in the representation of each response candidate. Specifically, each candidate representation is compared with the whole history to obtain a history consistency representation. Furthermore, the consistency signals between each candidate and the speaker's own history are considered to drive a model prefer a candidate that is logically consistent with the speaker's history logic. Finally, the above consistency representations are employed to output a ranking list of the candidate responses for multi-turn dialogue reasoning. Experimental results on two public dialogue datasets show that our method obtains higher ranking scores than the baseline models.
We develop a system for the FEVEROUS fact extraction and verification task that ranks an initial set of potential evidence and then pursues missing evidence in subsequent hops by trying to generate it, with a next hop prediction module'' whose output is matched against page elements in a predicted article. Seeking evidence with the next hop prediction module continues to improve FEVEROUS score for up to seven hops. Label classification is trained on possibly incomplete extracted evidence chains, utilizing hints that facilitate numerical comparison. The system achieves .281 FEVEROUS score and .658 label accuracy on the development set, and finishes in second place with .259 FEVEROUS score and .576 label accuracy on the test set.
Complex question answering often requires finding a reasoning chain that consists of multiple evidence pieces. Current approaches incorporate the strengths of structured knowledge and unstructured text, assuming text corpora is semi-structured. Build ing on dense retrieval methods, we propose a new multi-step retrieval approach (BeamDR) that iteratively forms an evidence chain through beam search in dense representations. When evaluated on multi-hop question answering, BeamDR is competitive to state-of-the-art systems, without using any semi-structured information. Through query composition in dense space, BeamDR captures the implicit relationships between evidence in the reasoning chain. The code is available at https://github.com/ henryzhao5852/BeamDR.
This article describes research on claim verification carried out using a multiple GAN-based model. The proposed model consists of three pairs of generators and discriminators. The generator and discriminator pairs are responsible for generating synt hetic data for supported and refuted claims and claim labels. A theoretical discussion about the proposed model is provided to validate the equilibrium state of the model. The proposed model is applied to the FEVER dataset, and a pre-trained language model is used for the input text data. The synthetically generated data helps to gain information that improves classification performance over state of the art baselines. The respective F1 scores after applying the proposed method on FEVER 1.0 and FEVER 2.0 datasets are 0.65+-0.018 and 0.65+-0.051.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا