في الآونة الأخيرة، يركز غالبية الباحثين تحليل المعنويات على تحليل المعنويات المستندة إلى الهدف لأنه يوفر تحليلا متعمقا بنتائج أكثر دقة بالمقارنة مع تحليل المعنويات التقليدية.في هذه الورقة، نقترح نهجا تعليميا تفاعليا لمعالجة مهمة تحليل المعنويات المستندة إلى الهدف للغة العربية.يستخدم نموذج IA-LSTM المقترح آلية تفاعلية تعتمد على الانتباه لإجبار النموذج على التركيز على أجزاء مختلفة (أهداف) من الجملة.نحن نبحث في القدرة على استخدام الأهداف والحق الأيمن والأيسر، ونموذجها بشكل منفصل لتعلم تمثيلاتهم الخاصة عبر النمذجة التفاعلية.قمنا بتقييم نموذجنا على مجموعة بيانات مختلفة: مراجعة الفنادق العربية ومجموعات بيانات مراجعة الكتاب العربية.توضح النتائج فعالية استخدام هذه التقنية النمذجة التفاعلية للمهمة القائمة على الأهداف العربية.حصلت النموذج على قيم دقة 83.10 مقارنة بنماذج Sota مثل AB-LSTM-PC والتي حصلت على 82.60 لنفس مجموعة البيانات.
Recently, the majority of sentiment analysis researchers focus on target-based sentiment analysis because it delivers in-depth analysis with more accurate results as compared to traditional sentiment analysis. In this paper, we propose an interactive learning approach to tackle a target-based sentiment analysis task for the Arabic language. The proposed IA-LSTM model uses an interactive attention-based mechanism to force the model to focus on different parts (targets) of a sentence. We investigate the ability to use targets, right, and left context, and model them separately to learn their own representations via interactive modeling. We evaluated our model on two different datasets: Arabic hotel review and Arabic book review datasets. The results demonstrate the effectiveness of using this interactive modeling technique for the Arabic target-based task. The model obtained accuracy values of 83.10 compared to SOTA models such as AB-LSTM-PC which obtained 82.60 for the same dataset.
References used
https://aclanthology.org/
Aspect-based sentiment analysis (ABSA) predicts the sentiment polarity towards a particular aspect term in a sentence, which is an important task in real-world applications. To perform ABSA, the trained model is required to have a good understanding
Both the issues of data deficiencies and semantic consistency are important for data augmentation. Most of previous methods address the first issue, but ignore the second one. In the cases of aspect-based sentiment analysis, violation of the above is
Aspect-based sentiment analysis (ABSA) mainly involves three subtasks: aspect term extraction, opinion term extraction, and aspect-level sentiment classification, which are typically handled in a separate or joint manner. However, previous approaches
Aspect-based sentiment analysis (ABSA) typically focuses on extracting aspects and predicting their sentiments on individual sentences such as customer reviews. Recently, another kind of opinion sharing platform, namely question answering (QA) forum,
The prominence of figurative language devices, such as sarcasm and irony, poses serious challenges for Arabic Sentiment Analysis (SA). While previous research works tackle SA and sarcasm detection separately, this paper introduces an end-to-end deep