الاتصالات المكتوبة هي ذات أهمية قصوى لتقدم البحث العلمي. ومع ذلك، قد تتأثر سرعة التطوير من ندرة المراجعين للحكم على جودة المواد البحثية. في هذا السياق، أصبحت الأساليب التلقائية التي يمكنها الاستعلام عن القطاعات اللغوية في مساهمات مكتوبة من خلال اكتشاف وجود أو عدم وجود أنماط الخطابية المشتركة أصبحت ضرورة. تهدف هذه الورقة إلى مقارنة تقنيات تعلم الآلات الخاضعة للإشراف التي تم اختبارها لإنجاز تحليل النوع في مقاطع مقدمة من مقالات هندسة البرمجيات. تم تنفيذ نهج شبه مشار إليه لزيادة عدد الجمل المشروح في اللوحات (المتاحة على: مجهول). تم إجراء نهجين إشرافين باستخدام الانحدار من SVM وانحدار لوجستي لتقييم درجة F- النتيجة لتحليل النوع في الجور. تم العثور على تقنية استنادا إلى الانحدار اللوجستي ونقلها لإجراء تحليل النوع بشكل مرض للغاية بمعدل 88.25 على درجة F عند استرداد الأنماط على المستوى العام.
Written communication is of utmost importance to the progress of scientific research. The speed of such development, however, may be affected by the scarcity of reviewers to referee the quality of research articles. In this context, automatic approaches that are able to query linguistic segments in written contributions by detecting the presence or absence of common rhetorical patterns have become a necessity. This paper aims to compare supervised machine learning techniques tested to accomplish genre analysis in Introduction sections of software engineering articles. A semi-supervised approach was carried out to augment the number of annotated sentences in SciSents (Avaliable on: ANONYMOUS). Two supervised approaches using SVM and logistic regression were undertaken to assess the F-score for genre analysis in the corpus. A technique based on logistic regression and BERT has been found to perform genre analysis highly satisfactorily with an average of 88.25 on F-score when retrieving patterns at an overall level.
References used
https://aclanthology.org/
Paraphrase generation is a longstanding NLP task that has diverse applications on downstream NLP tasks. However, the effectiveness of existing efforts predominantly relies on large amounts of golden labeled data. Though unsupervised endeavors have be
Recent work has shown that monolingual masked language models learn to represent data-driven notions of language variation which can be used for domain-targeted training data selection. Dataset genre labels are already frequently available, yet remai
Relation extraction is a subtask of natural langage processing that has seen many improvements in recent years, with the advent of complex pre-trained architectures. Many of these state-of-the-art approaches are tested against benchmarks with labelle
This research traces, after conducting a wide literature survey, the areas not covered by prominent agent oriented software engineering (AOSE) methodologies. Each methodology has its strength and weakness and focuses on some stages of software
devel
Synthesizing data for semantic parsing has gained increasing attention recently. However, most methods require handcrafted (high-precision) rules in their generative process, hindering the exploration of diverse unseen data. In this work, we propose