Do you want to publish a course? Click here

Automatic Transformation of Clinical Narratives into Structured Format

التحول التلقائي للروايات السريرية إلى تنسيق منظم

546   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Vast amounts of data in healthcare are available in unstructured text format, usually in the local language of the countries. These documents contain valuable information. Secondary use of clinical narratives and information extraction of key facts and relations from them about the patient disease history can foster preventive medicine and improve healthcare. In this paper, we propose a hybrid method for the automatic transformation of clinical text into a structured format. The documents are automatically sectioned into the following parts: diagnosis, patient history, patient status, lab results. For the Diagnosis'' section a deep learning text-based encoding into ICD-10 codes is applied using MBG-ClinicalBERT - a fine-tuned ClinicalBERT model for Bulgarian medical text. From the Patient History'' section, we identify patient symptoms using a rule-based approach enhanced with similarity search based on MBG-ClinicalBERT word embeddings. We also identify symptom relations like negation. For the Patient Status'' description, binary classification is used to determine the status of each anatomic organ. In this paper, we demonstrate different methods for adapting NLP tools for English and other languages to a low resource language like Bulgarian.



References used
https://aclanthology.org/
rate research

Read More

We present an information retrieval-based question answer system to answer legal questions. The system is not limited to a predefined set of questions or patterns and uses both sparse vector search and embeddings for input to a BERT-based answer re-r anking system. A combination of general domain and legal domain data is used for training. This natural question answering system is in production and is used commercially.
Ad hoc abbreviations are commonly found in informal communication channels that favor shorter messages. We consider the task of reversing these abbreviations in context to recover normalized, expanded versions of abbreviated messages. The problem is related to, but distinct from, spelling correction, as ad hoc abbreviations are intentional and can involve more substantial differences from the original words. Ad hoc abbreviations are also productively generated on-the-fly, so they cannot be resolved solely by dictionary lookup. We generate a large, open-source data set of ad hoc abbreviations. This data is used to study abbreviation strategies and to develop two strong baselines for abbreviation expansion.
This paper describes the submission of the CU-UBC team for the SIGMORPHON 2021 Shared Task 2: Unsupervised morphological paradigm clustering. Our system generates paradigms using morphological transformation rules which are discovered from raw data. We experiment with two methods for discovering rules. Our first approach generates prefix and suffix transformations between similar strings. Secondly, we experiment with more general rules which can apply transformations inside the input strings in addition to prefix and suffix transformations. We find that the best overall performance is delivered by prefix and suffix rules but more general transformation rules perform better for languages with templatic morphology and very high morpheme-to-word ratios.
Siamese Neural Networks have been widely used to perform similarity classification in multi-class settings. Their architecture can be used to group the clinical trials belonging to the same drug-development pathway along the several clinical trial ph ases. Here we present an approach for the unmet need of drug-development pathway reconstruction, based on an Enhanced hybrid Siamese-Deep Neural Network (EnSidNet). The proposed model demonstrates significant improvement above baselines in a 1-shot evaluation setting and in a classical similarity setting. EnSidNet can be an essential tool in a semi-supervised learning environment: by selecting clinical trials highly likely to belong to the same drug-development pathway it is possible to speed up the labelling process of human experts, allowing the check of a consistent volume of data, further used in the model's training dataset.
Many state-of-art neural models designed for monotonicity reasoning perform poorly on downward inference. To address this shortcoming, we developed an attentive tree-structured neural network. It consists of a tree-based long-short-term-memory networ k (Tree-LSTM) with soft attention. It is designed to model the syntactic parse tree information from the sentence pair of a reasoning task. A self-attentive aggregator is used for aligning the representations of the premise and the hypothesis. We present our model and evaluate it using the Monotonicity Entailment Dataset (MED). We show and attempt to explain that our model outperforms existing models on MED.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا