Do you want to publish a course? Click here

Unsupervised Paradigm Clustering Using Transformation Rules

تجميع النماذج غير الخاضعة لها باستخدام قواعد التحول

247   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

This paper describes the submission of the CU-UBC team for the SIGMORPHON 2021 Shared Task 2: Unsupervised morphological paradigm clustering. Our system generates paradigms using morphological transformation rules which are discovered from raw data. We experiment with two methods for discovering rules. Our first approach generates prefix and suffix transformations between similar strings. Secondly, we experiment with more general rules which can apply transformations inside the input strings in addition to prefix and suffix transformations. We find that the best overall performance is delivered by prefix and suffix rules but more general transformation rules perform better for languages with templatic morphology and very high morpheme-to-word ratios.



References used
https://aclanthology.org/
rate research

Read More

This paper presents two different systems for unsupervised clustering of morphological paradigms, in the context of the SIGMORPHON 2021 Shared Task 2. The goal of this task is to correctly cluster words in a given language by their inflectional parad igm, without any previous knowledge of the language and without supervision from labeled data of any sort. The words in a single morphological paradigm are different inflectional variants of an underlying lemma, meaning that the words share a common core meaning. They also - usually - show a high degree of orthographical similarity. Following these intuitions, we investigate KMeans clustering using two different types of word representations: one focusing on orthographical similarity and the other focusing on semantic similarity.Additionally, we discuss the merits of randomly initialized centroids versus pre-defined centroids for clustering. Pre-defined centroids are identified based on either a standard longest common substring algorithm or a connected graph method built off of longest common substring. For all development languages, the character-based embeddings perform similarly to the baseline, and the semantic embeddings perform well below the baseline.Analysis of the systems' errors suggests that clustering based on orthographic representations is suitable for a wide range of morphological mechanisms, particularly as part of a larger system.
This work describes the Edinburgh submission to the SIGMORPHON 2021 Shared Task 2 on unsupervised morphological paradigm clustering. Given raw text input, the task was to assign each token to a cluster with other tokens from the same paradigm. We use Adaptor Grammar segmentations combined with frequency-based heuristics to predict paradigm clusters. Our system achieved the highest average F1 score across 9 test languages, placing first out of 15 submissions.
Machine translation usually relies on parallel corpora to provide parallel signals for training. The advent of unsupervised machine translation has brought machine translation away from this reliance, though performance still lags behind traditional supervised machine translation. In unsupervised machine translation, the model seeks symmetric language similarities as a source of weak parallel signal to achieve translation. Chomsky's Universal Grammar theory postulates that grammar is an innate form of knowledge to humans and is governed by universal principles and constraints. Therefore, in this paper, we seek to leverage such shared grammar clues to provide more explicit language parallel signals to enhance the training of unsupervised machine translation models. Through experiments on multiple typical language pairs, we demonstrate the effectiveness of our proposed approaches.
We describe the second SIGMORPHON shared task on unsupervised morphology: the goal of the SIGMORPHON 2021 Shared Task on Unsupervised Morphological Paradigm Clustering is to cluster word types from a raw text corpus into paradigms. To this end, we re lease corpora for 5 development and 9 test languages, as well as gold partial paradigms for evaluation. We receive 14 submissions from 4 teams that follow different strategies, and the best performing system is based on adaptor grammars. Results vary significantly across languages. However, all systems are outperformed by a supervised lemmatizer, implying that there is still room for improvement.
This paper describes our system for the SIGMORPHON 2021 Shared Task on Unsupervised Morphological Paradigm Clustering, which asks participants to group inflected forms together according their underlying lemma without the aid of annotated training da ta. We employ agglomerative clustering to group word forms together using a metric that combines an orthographic distance and a semantic distance from word embeddings. We experiment with two variations of an edit distance-based model for quantifying orthographic distance, but, due to time constraints, our system does not improve over the shared task's baseline system.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا