يقدم وصف النظام التالي نهجنا في اكتشاف تقنيات الإقناع في النصوص والصور.تم تأطير المهمة المعينة بمثابة مشكلة تصنيف متعدد العلامات مع التقنيات المختلفة التي تخدم باسم ملصقات فئة.تعد مشكلة تصنيف العلامات المتعددة واحدة واحدة فيها قائمة من المتغيرات المستهدفة مثل ملصقاتنا الفئة مرتبطة بكل قطعة إدخال ويفترض أن المستند يمكن أن يتم تعيينه في وقت واحد ويتم تعيينه بشكل مستقل إلى ملصقات أو فئات متعددة.من أجل تخصيص ملصقات فئة للميمات المعينة، اخترنا روبرتا (نهج برت محمول بقوة) كفنذة شبكة عصبية لتصنيف الرمز المميز والتسلسل.بدء التشغيل باستخدام نموذج مدرب مسبقا لتمثيل اللغة، نضربنا هذا النموذج على مهمة التصنيف المعطاة مع البيانات المشروحة المقدمة في خطوات التدريب الخاضعة للإشراف.لدمج ميزات الصور في الإعداد المتعدد الوسائط، نعتمد على بنية VGGG-16 المدربة مسبقا مسبقا.
The following system description presents our approach to the detection of persuasion techniques in texts and images. The given task has been framed as a multi-label classification problem with the different techniques serving as class labels. The multi-label classification problem is one in which a list of target variables such as our class labels is associated with every input chunk and assumes that a document can simultaneously and independently be assigned to multiple labels or classes. In order to assign class labels to the given memes, we opted for RoBERTa (A Robustly Optimized BERT Pretraining Approach) as a neural network architecture for token and sequence classification. Starting off with a pre-trained model for language representation we fine-tuned this model on the given classification task with the provided annotated data in supervised training steps. To incorporate image features in the multi-modal setting, we rely on the pre-trained VGG-16 model architecture.
References used
https://aclanthology.org/
We describe SemEval-2021 task 6 on Detection of Persuasion Techniques in Texts and Images: the data, the annotation guidelines, the evaluation setup, the results, and the participating systems. The task focused on memes and had three subtasks: (i) de
We describe our approach for SemEval-2021 task 6 on detection of persuasion techniques in multimodal content (memes). Our system combines pretrained multimodal models (CLIP) and chained classifiers. Also, we propose to enrich the data by a data augmentation technique. Our submission achieves a rank of 8/16 in terms of F1-micro and 9/16 with F1-macro on the test set.
In recent years, memes combining image and text have been widely used in social media, and memes are one of the most popular types of content used in online disinformation campaigns. In this paper, our study on the detection of persuasion techniques
Inscribing persuasion techniques in memes is the most impactful way to influence peoples' mindsets. People are more inclined to memes as they are more stimulating and convincing and hence memes are often exploited by tactfully engraving propaganda in
This paper describes and examines different systems to address Task 6 of SemEval-2021: Detection of Persuasion Techniques In Texts And Images, Subtask 1. The task aims to build a model for identifying rhetorical and psycho- logical techniques (such a