تهدف مهمة Sereval 4 إلى إيجاد خيار مناسب من المرشحين المتعددين لحل مهمة فهم القراءة في الجهاز.تقترح معظم الأساليب الموجودة على Concat السؤال والخيار معا لتشكيل نموذج على دراية بالسياق.ومع ذلك، نقول أن التسلسلات المباشرة يمكن أن توفر فقط سياقا محظوظا فقط لمهمة MRC، مما يتجاهل المواقف المحددة للخيار بالنسبة للسؤال.في هذه الورقة، نقترح نموذج رواية MRC عن طريق تعبئة الخيارات في السؤال لإنتاج سياق جيد المحبوس (يعرف بأنه ملخص) يمكن أن تكشف بشكل أفضل عن العلاقة بين الخيار والسؤال.نقوم بإجراء سلسلة من التجارب على مجموعة البيانات المعينة، وتظهرت النتائج أن نهجنا يفوق النظرات الأخرى النظراء إلى حد كبير.
SemEval task 4 aims to find a proper option from multiple candidates to resolve the task of machine reading comprehension. Most existing approaches propose to concat question and option together to form a context-aware model. However, we argue that straightforward concatenation can only provide a coarse-grained context for the MRC task, ignoring the specific positions of the option relative to the question. In this paper, we propose a novel MRC model by filling options into the question to produce a fine-grained context (defined as summary) which can better reveal the relationship between option and question. We conduct a series of experiments on the given dataset, and the results show that our approach outperforms other counterparts to a large extent.
References used
https://aclanthology.org/
This paper describes the winning system for subtask 2 and the second-placed system for subtask 1 in SemEval 2021 Task 4: ReadingComprehension of Abstract Meaning. We propose to use pre-trianed Electra discriminator to choose the best abstract word fr
This paper introduces the SemEval-2021 shared task 4: Reading Comprehension of Abstract Meaning (ReCAM). This shared task is designed to help evaluate the ability of machines in representing and understanding abstract concepts.Given a passage and the
In this paper, we present our contribution in SemEval-2021 Task 1: Lexical Complexity Prediction, where we integrate linguistic, statistical, and semantic properties of the target word and its context as features within a Machine Learning (ML) framew
This paper describes our system for SemEval-2021 Task 4: Reading Comprehension of Abstract Meaning. To accomplish this task, we utilize the Knowledge-Enhanced Graph Attention Network (KEGAT) architecture with a novel semantic space transformation str
Most question answering tasks focuses on predicting concrete answers, e.g., named entities. These tasks can be normally achieved by understanding the contexts without additional information required. In Reading Comprehension of Abstract Meaning (ReCA