تهدف MeasessVal إلى تحديد الكميات إلى جانب الكيانات التي تقاس خصائص إضافية داخل الوثائق العلمية الإنجليزية.مجموعة متنوعة من الأساليب المستخدمة تجعل القياسات، الجانب الأكثر أهمية في الكتابة العلمية، صعبة الاستخراج.تقدم هذه الورقة دراسات الاجتثاثات في اتخاذ القضية لعدة خطوات مسبقة مسبق مثل قواعد التزخم المتخصصة.بالنسبة للهيكل اللغوي، نشيف أشجار التبعية في شبكة استئصال الرسم البياني العميق (DGCNN) لتصنيف المهام المتعدد.
MeasEval aims at identifying quantities along with the entities that are measured with additional properties within English scientific documents. The variety of styles used makes measurements, a most crucial aspect of scientific writing, challenging to extract. This paper presents ablation studies making the case for several preprocessing steps such as specialized tokenization rules. For linguistic structure, we encode dependency trees in a Deep Graph Convolution Network (DGCNN) for multi-task classification.
References used
https://aclanthology.org/
This paper explains the design of a heterogeneous system that ranked eighth in competition in SemEval2021 Task 8. We analyze ablation experiments and demonstrate how the system components, namely tokenizer, unit identifier, modifier classifier, and l
This work describes our approach for subtasks of SemEval-2021 Task 8: MeasEval: Counts and Measurements which took the official first place in the competition. To solve all subtasks we use multi-task learning in a question-answering-like manner. We a
This paper presents our system for the Quantity span identification, Unit of measurement identification and Value modifier classification subtasks of the MeasEval 2021 task. The purpose of the Quantity span identification task was to locate spans of
Scientific documents are replete with measurements mentioned in various formats and styles. As such, in a document with multiple quantities and measured entities, the task of associating each quantity to its corresponding measured entity is challengi
This paper presents the system for SemEval 2021 Task 8 (MeasEval). MeasEval is a novel span extraction, classification, and relation extraction task focused on finding quantities, attributes of these quantities, and additional information, including