Do you want to publish a course? Click here

HamiltonDinggg at SemEval-2021 Task 5: Investigating Toxic Span Detection using RoBERTa Pre-training

Hamiltondingggg في مهمة Semeval-2021: التحقيق في اكتشاف SPAN SPAN باستخدام روبرتا قبل التدريب

294   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

This paper presents our system submission to task 5: Toxic Spans Detection of the SemEval-2021 competition. The competition aims at detecting the spans that make a toxic span toxic. In this paper, we demonstrate our system for detecting toxic spans, which includes expanding the toxic training set with Local Interpretable Model-Agnostic Explanations (LIME), fine-tuning RoBERTa model for detection, and error analysis. We found that feeding the model with an expanded training set using Reddit comments of polarized-toxicity and labeling with LIME on top of logistic regression classification could help RoBERTa more accurately learn to recognize toxic spans. We achieved a span-level F1 score of 0.6715 on the testing phase. Our quantitative and qualitative results show that the predictions from our system could be a good supplement to the gold training set's annotations.



References used
https://aclanthology.org/
rate research

Read More

This paper describes the system developed by the Antwerp Centre for Digital humanities and literary Criticism [UAntwerp] for toxic span detection. We used a stacked generalisation ensemble of five component models, with two distinct interpretations o f the task. Two models attempted to predict binary word toxicity based on ngram sequences, whilst 3 categorical span based models were trained to predict toxic token labels based on complete sequence tokens. The five models' predictions were ensembled within an LSTM model. As well as describing the system, we perform error analysis to explore model performance in relation to textual features. The system described in this paper scored 0.6755 and ranked 26th.
Toxicity is pervasive in social media and poses a major threat to the health of online communities. The recent introduction of pre-trained language models, which have achieved state-of-the-art results in many NLP tasks, has transformed the way in whi ch we approach natural language processing. However, the inherent nature of pre-training means that they are unlikely to capture task-specific statistical information or learn domain-specific knowledge. Additionally, most implementations of these models typically do not employ conditional random fields, a method for simultaneous token classification. We show that these modifications can improve model performance on the Toxic Spans Detection task at SemEval-2021 to achieve a score within 4 percentage points of the top performing team.
This article introduces the system description of the hub team, which explains the related work and experimental results of our team's participation in SemEval 2021 Task 5: Toxic Spans Detection. The data for this shared task comes from some posts on the Internet. The task goal is to identify the toxic content contained in these text data. We need to find the span of the toxic text in the text data as accurately as possible. In the same post, the toxic text may be one paragraph or multiple paragraphs. Our team uses a classification scheme based on word-level to accomplish this task. The system we used to submit the results is ALBERT+BILSTM+CRF. The result evaluation index of the task submission is the F1 score, and the final score of the prediction result of the test set submitted by our team is 0.6640226029.
The Toxic Spans Detection task of SemEval-2021 required participants to predict the spans of toxic posts that were responsible for the toxic label of the posts. The task could be addressed as supervised sequence labeling, using training data with gol d toxic spans provided by the organisers. It could also be treated as rationale extraction, using classifiers trained on potentially larger external datasets of posts manually annotated as toxic or not, without toxic span annotations. For the supervised sequence labeling approach and evaluation purposes, posts previously labeled as toxic were crowd-annotated for toxic spans. Participants submitted their predicted spans for a held-out test set and were scored using character-based F1. This overview summarises the work of the 36 teams that provided system descriptions.
Recurrent Neural Networks (RNN) have been widely used in various Natural Language Processing (NLP) tasks such as text classification, sequence tagging, and machine translation. Long Short Term Memory (LSTM), a special unit of RNN, has the benefit of memorizing past and even future information in a sentence (especially for bidirectional LSTM). In the shared task of detecting spans which make texts toxic, we first apply pretrained word embedding (GloVe) to generate the word vectors after tokenization. And then we construct Bidirectional Long Short Term Memory-Conditional Random Field (Bi-LSTM-CRF) model by Baidu research to predict whether each word in the sentence is toxic or not. We tune hyperparameters of dropout rate, number of LSTM units, embedding size with 10 epochs and choose the best epoch with validation recall. Our model achieves an F1 score of 66.99 percent in test dataset.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا