توضح هذه الورقة النظام الذي طوره مركز أنتويرب للعلوم الإنسانية الرقمية والنقد الأدبي [UANTWERP] للكشف عن السامة.استخدمنا مجموعة تعميم مكدسة من خمسة نماذج مكونة، مع تفسيرات مميزة للمهمة.حاولت نماذج التنبؤ بتسمم سمية الكلمات الثنائية بناء على تسلسل النجرام، بينما تم تدريب 3 نماذج قاسية قائمة على أساس أن توقع ملصقات رمزية سامة بناء على الرموز التسلسلية الكاملة.تم فرك تنبؤات النماذج الخمس داخل نموذج LSTM.بالإضافة إلى وصف النظام، نقوم بإجراء تحليل الأخطاء لاستكشاف الأداء النموذجي فيما يتعلق بالميزات النصية.سجل النظام الموصوف في هذه الورقة 0.6755 واحتل المرتبة 26.
This paper describes the system developed by the Antwerp Centre for Digital humanities and literary Criticism [UAntwerp] for toxic span detection. We used a stacked generalisation ensemble of five component models, with two distinct interpretations of the task. Two models attempted to predict binary word toxicity based on ngram sequences, whilst 3 categorical span based models were trained to predict toxic token labels based on complete sequence tokens. The five models' predictions were ensembled within an LSTM model. As well as describing the system, we perform error analysis to explore model performance in relation to textual features. The system described in this paper scored 0.6755 and ranked 26th.
References used
https://aclanthology.org/
This paper presents our system submission to task 5: Toxic Spans Detection of the SemEval-2021 competition. The competition aims at detecting the spans that make a toxic span toxic. In this paper, we demonstrate our system for detecting toxic spans,
This paper presents our submission to SemEval-2021 Task 5: Toxic Spans Detection. The purpose of this task is to detect the spans that make a text toxic, which is a complex labour for several reasons. Firstly, because of the intrinsic subjectivity of
This article introduces the system description of the hub team, which explains the related work and experimental results of our team's participation in SemEval 2021 Task 5: Toxic Spans Detection. The data for this shared task comes from some posts on
In recent years, the widespread use of social media has led to an increase in the generation of toxic and offensive content on online platforms. In response, social media platforms have worked on developing automatic detection methods and employing h
Toxic language is often present in online forums, especially when politics and other polarizing topics arise, and can lead to people becoming discouraged from joining or continuing conversations. In this paper, we use data consisting of comments with