نحن تصف عروضنا إلى الطبعة السادسة من المهمة المشتركة للتطبيقات الاجتماعية للتطبيقات الصحية (SMM4H).شارك فريقنا (ognlp) في المهمة الفرعية: تصنيف تغريدات القضايا المحتملة للإبلاغ عنها الذاتي (المهمة 5).بالنسبة لتقديم طلباتنا، عملنا أنظمة بناء على نماذج المحولات التراجع التلقائي (XLNET) والترجمة الخلفية لموازنة DataSet.
We describe our submissions to the 6th edition of the Social Media Mining for Health Applications (SMM4H) shared task. Our team (OGNLP) participated in the sub-task: Classification of tweets self-reporting potential cases of COVID-19 (Task 5). For our submissions, we employed systems based on auto-regressive transformer models (XLNet) and back-translation for balancing the dataset.
References used
https://aclanthology.org/
Back-translation (BT) of target monolingual corpora is a widely used data augmentation strategy for neural machine translation (NMT), especially for low-resource language pairs. To improve effectiveness of the available BT data, we introduce HintedBT
Framing involves the positive or negative presentation of an argument or issue depending on the audience and goal of the speaker. Differences in lexical framing, the focus of our work, can have large effects on peoples' opinions and beliefs. To make
A cascaded Sign Language Translation system first maps sign videos to gloss annotations and then translates glosses into a spoken languages. This work focuses on the second-stage gloss translation component, which is challenging due to the scarcity o
To obtain high-quality sentence embeddings from pretrained language models (PLMs), they must either be augmented with additional pretraining objectives or finetuned on a large set of labeled text pairs. While the latter approach typically outperforms
This work introduces a simple regressive ensemble for evaluating machine translation quality based on a set of novel and established metrics. We evaluate the ensemble using a correlation to expert-based MQM scores of the WMT 2021 Metrics workshop. In