Do you want to publish a course? Click here

The ProfNER shared task on automatic recognition of occupation mentions in social media: systems, evaluation, guidelines, embeddings and corpora

المهمة المشتركة الواردة في الاعتراف التلقائي بالاحتلال يذكر في وسائل التواصل الاجتماعي: النظم والتقييم والمبادئ التوجيهية والمديرينات والشريعة

249   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Detection of occupations in texts is relevant for a range of important application scenarios, like competitive intelligence, sociodemographic analysis, legal NLP or health-related occupational data mining. Despite the importance and heterogeneous data types that mention occupations, text mining efforts to recognize them have been limited. This is due to the lack of clear annotation guidelines and high-quality Gold Standard corpora. Social media data can be regarded as a relevant source of information for real-time monitoring of at-risk occupational groups in the context of pandemics like the COVID-19 one, facilitating intervention strategies for occupations in direct contact with infectious agents or affected by mental health issues. To evaluate current NLP methods and to generate resources, we have organized the ProfNER track at SMM4H 2021, providing ProfNER participants with a Gold Standard corpus of manually annotated tweets (human IAA of 0.919) following annotation guidelines available in Spanish and English, an occupation gazetteer, a machine-translated version of tweets, and FastText embeddings. Out of 35 registered teams, 11 submitted a total of 27 runs. Best-performing participants built systems based on recent NLP technologies (e.g. transformers) and achieved 0.93 F-score in Text Classification and 0.839 in Named Entity Recognition. Corpus: https://doi.org/10.5281/zenodo.4309356



References used
https://aclanthology.org/
rate research

Read More

Mental health is getting more and more attention recently, depression being a very common illness nowadays, but also other disorders like anxiety, obsessive-compulsive disorders, feeding disorders, autism, or attention-deficit/hyperactivity disorders . The huge amount of data from social media and the recent advances of deep learning models provide valuable means to automatically detecting mental disorders from plain text. In this article, we experiment with state-of-the-art methods on the SMHD mental health conditions dataset from Reddit (Cohan et al., 2018). Our contribution is threefold: using a dataset consisting of more illnesses than most studies, focusing on general text rather than mental health support groups and classification by posts rather than individuals or groups. For the automatic classification of the diseases, we employ three deep learning models: BERT, RoBERTa and XLNET. We double the baseline established by Cohan et al. (2018), on just a sample of their dataset. We improve the results obtained by Jiang et al. (2020) on post-level classification. The accuracy obtained by the eating disorder classifier is the highest due to the pregnant presence of discussions related to calories, diets, recipes etc., whereas depression had the lowest F1 score, probably because depression is more difficult to identify in linguistic acts.
This paper presents our contribution to the ProfNER shared task. Our work focused on evaluating different pre-trained word embedding representations suitable for the task. We further explored combinations of embeddings in order to improve the overall results.
The speech act of complaining is used by humans to communicate a negative mismatch between reality and expectations as a reaction to an unfavorable situation. Linguistic theory of pragmatics categorizes complaints into various severity levels based o n the face-threat that the complainer is willing to undertake. This is particularly useful for understanding the intent of complainers and how humans develop suitable apology strategies. In this paper, we study the severity level of complaints for the first time in computational linguistics. To facilitate this, we enrich a publicly available data set of complaints with four severity categories and train different transformer-based networks combined with linguistic information achieving 55.7 macro F1. We also jointly model binary complaint classification and complaint severity in a multi-task setting achieving new state-of-the-art results on binary complaint detection reaching up to 88.2 macro F1. Finally, we present a qualitative analysis of the behavior of our models in predicting complaint severity levels.
Mainstream research on hate speech focused so far predominantly on the task of classifying mainly social media posts with respect to predefined typologies of rather coarse-grained hate speech categories. This may be sufficient if the goal is to detec t and delete abusive language posts. However, removal is not always possible due to the legislation of a country. Also, there is evidence that hate speech cannot be successfully combated by merely removing hate speech posts; they should be countered by education and counter-narratives. For this purpose, we need to identify (i) who is the target in a given hate speech post, and (ii) what aspects (or characteristics) of the target are attributed to the target in the post. As the first approximation, we propose to adapt a generic state-of-the-art concept extraction model to the hate speech domain. The outcome of the experiments is promising and can serve as inspiration for further work on the task
Sarcasm is a linguistic expression often used to communicate the opposite of what is said, usually something that is very unpleasant with an intention to insult or ridicule. Inherent ambiguity in sarcastic expressions makes sarcasm detection very dif ficult. In this work, we focus on detecting sarcasm in textual conversations, written in English, from various social networking platforms and online media. To this end, we develop an interpretable deep learning model using multi-head self-attention and gated recurrent units. We show the effectiveness and interpretability of our approach by achieving state-of-the-art results on datasets from social networking platforms, online discussion forums, and political dialogues.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا