Do you want to publish a course? Click here

Targets and Aspects in Social Media Hate Speech

الأهداف والجوانب في خطاب كراهية وسائل التواصل الاجتماعي

488   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Mainstream research on hate speech focused so far predominantly on the task of classifying mainly social media posts with respect to predefined typologies of rather coarse-grained hate speech categories. This may be sufficient if the goal is to detect and delete abusive language posts. However, removal is not always possible due to the legislation of a country. Also, there is evidence that hate speech cannot be successfully combated by merely removing hate speech posts; they should be countered by education and counter-narratives. For this purpose, we need to identify (i) who is the target in a given hate speech post, and (ii) what aspects (or characteristics) of the target are attributed to the target in the post. As the first approximation, we propose to adapt a generic state-of-the-art concept extraction model to the hate speech domain. The outcome of the experiments is promising and can serve as inspiration for further work on the task



References used
https://aclanthology.org/
rate research

Read More

Hate speech and profanity detection suffer from data sparsity, especially for languages other than English, due to the subjective nature of the tasks and the resulting annotation incompatibility of existing corpora. In this study, we identify profane subspaces in word and sentence representations and explore their generalization capability on a variety of similar and distant target tasks in a zero-shot setting. This is done monolingually (German) and cross-lingually to closely-related (English), distantly-related (French) and non-related (Arabic) tasks. We observe that, on both similar and distant target tasks and across all languages, the subspace-based representations transfer more effectively than standard BERT representations in the zero-shot setting, with improvements between F1 +10.9 and F1 +42.9 over the baselines across all tested monolingual and cross-lingual scenarios.
Existing work on automated hate speech classification assumes that the dataset is fixed and the classes are pre-defined. However, the amount of data in social media increases every day, and the hot topics changes rapidly, requiring the classifiers to be able to continuously adapt to new data without forgetting the previously learned knowledge. This ability, referred to as lifelong learning, is crucial for the real-word application of hate speech classifiers in social media. In this work, we propose lifelong learning of hate speech classification on social media. To alleviate catastrophic forgetting, we propose to use Variational Representation Learning (VRL) along with a memory module based on LB-SOINN (Load-Balancing Self-Organizing Incremental Neural Network). Experimentally, we show that combining variational representation learning and the LB-SOINN memory module achieves better performance than the commonly-used lifelong learning techniques.
The framing of political issues can influence policy and public opinion. Even though the public plays a key role in creating and spreading frames, little is known about how ordinary people on social media frame political issues. By creating a new dat aset of immigration-related tweets labeled for multiple framing typologies from political communication theory, we develop supervised models to detect frames. We demonstrate how users' ideology and region impact framing choices, and how a message's framing influences audience responses. We find that the more commonly-used issue-generic frames obscure important ideological and regional patterns that are only revealed by immigration-specific frames. Furthermore, frames oriented towards human interests, culture, and politics are associated with higher user engagement. This large-scale analysis of a complex social and linguistic phenomenon contributes to both NLP and social science research.
In this work, we provide an extensive part-of-speech analysis of the discourse of social media users with depression. Research in psychology revealed that depressed users tend to be self-focused, more preoccupied with themselves and ruminate more abo ut their lives and emotions. Our work aims to make use of large-scale datasets and computational methods for a quantitative exploration of discourse. We use the publicly available depression dataset from the Early Risk Prediction on the Internet Workshop (eRisk) 2018 and extract part-of-speech features and several indices based on them. Our results reveal statistically significant differences between the depressed and non-depressed individuals confirming findings from the existing psychology literature. Our work provides insights regarding the way in which depressed individuals are expressing themselves on social media platforms, allowing for better-informed computational models to help monitor and prevent mental illnesses.
The speech act of complaining is used by humans to communicate a negative mismatch between reality and expectations as a reaction to an unfavorable situation. Linguistic theory of pragmatics categorizes complaints into various severity levels based o n the face-threat that the complainer is willing to undertake. This is particularly useful for understanding the intent of complainers and how humans develop suitable apology strategies. In this paper, we study the severity level of complaints for the first time in computational linguistics. To facilitate this, we enrich a publicly available data set of complaints with four severity categories and train different transformer-based networks combined with linguistic information achieving 55.7 macro F1. We also jointly model binary complaint classification and complaint severity in a multi-task setting achieving new state-of-the-art results on binary complaint detection reaching up to 88.2 macro F1. Finally, we present a qualitative analysis of the behavior of our models in predicting complaint severity levels.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا