الملخص نقدم آلية بسيطة ولكن مرنة لتعلم خطة وسيطة للأرض جيل من ملخصات الجماعة. على وجه التحديد، نقوم بإعداد الملخصات المستهدفة (أو المطالبة) مع سلاسل الكيانات --- ترتيب تسلسل الكيانات المذكورة في الملخص. ثم يتم تدريب نماذج التسلسل المستندة إلى التسلسل على المحولات لتوليد سلسلة الكيان ثم تابع إنشاء الملخص مشروط على سلسلة الكيان والإدخال. جربنا كلا من الاحتمالات وتصفيتها مع هدف تخطيط المحتوى هذا. عند تقييمها على CNN / Dailymail، XSUM، SAMSUM، وبيلسين، نوضح تجريبيا أن الجيل الأسطوري له هدف التخطيط يحسن خصوصية الكيان والتخطيط في ملخصات لجميع مجموعات البيانات، وتحقق أداء حديثة على XSUM و SAMSUM من حيث الحمر. علاوة على ذلك، نوضح تجريبيا أن التخطيط مع سلاسل الكيانات يوفر آلية للسيطرة على الهلوسة في ملخصات مبادرة. من خلال مطالبة وحدة فك الترميز بخطة محتوى معدلة تنخفض الكيانات الهلوسة، فإننا نتفوق من الأساليب الحديثة من خلال الإخلاص عند تقييمها تلقائيا والبشر.
Abstract We introduce a simple but flexible mechanism to learn an intermediate plan to ground the generation of abstractive summaries. Specifically, we prepend (or prompt) target summaries with entity chains---ordered sequences of entities mentioned in the summary. Transformer-based sequence-to-sequence models are then trained to generate the entity chain and then continue generating the summary conditioned on the entity chain and the input. We experimented with both pretraining and finetuning with this content planning objective. When evaluated on CNN/DailyMail, XSum, SAMSum, and BillSum, we demonstrate empirically that the grounded generation with the planning objective improves entity specificity and planning in summaries for all datasets, and achieves state-of-the-art performance on XSum and SAMSum in terms of rouge. Moreover, we demonstrate empirically that planning with entity chains provides a mechanism to control hallucinations in abstractive summaries. By prompting the decoder with a modified content plan that drops hallucinated entities, we outperform state-of-the-art approaches for faithfulness when evaluated automatically and by humans.
References used
https://aclanthology.org/
Abstractive summarization models heavily rely on copy mechanisms, such as the pointer network or attention, to achieve good performance, measured by textual overlap with reference summaries. As a result, the generated summaries stay close to the form
Modern summarization models generate highly fluent but often factually unreliable outputs. This motivated a surge of metrics attempting to measure the factuality of automatically generated summaries. Due to the lack of common benchmarks, these metric
Despite significant progress in neural abstractive summarization, recent studies have shown that the current models are prone to generating summaries that are unfaithful to the original context. To address the issue, we study contrast candidate gener
Abstractive summarization, the task of generating a concise summary of input documents, requires: (1) reasoning over the source document to determine the salient pieces of information scattered across the long document, and (2) composing a cohesive t
A crucial difference between single- and multi-document summarization is how salient content manifests itself in the document(s). While such content may appear at the beginning of a single document, essential information is frequently reiterated in a