Do you want to publish a course? Click here

A Statistical Analysis of Summarization Evaluation Metrics Using Resampling Methods

تحليل إحصائي لمقاييس تقييم التلخيص باستخدام أساليب إعادة التشكيل

271   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Abstract The quality of a summarization evaluation metric is quantified by calculating the correlation between its scores and human annotations across a large number of summaries. Currently, it is unclear how precise these correlation estimates are, nor whether differences between two metrics' correlations reflect a true difference or if it is due to mere chance. In this work, we address these two problems by proposing methods for calculating confidence intervals and running hypothesis tests for correlations using two resampling methods, bootstrapping and permutation. After evaluating which of the proposed methods is most appropriate for summarization through two simulation experiments, we analyze the results of applying these methods to several different automatic evaluation metrics across three sets of human annotations. We find that the confidence intervals are rather wide, demonstrating high uncertainty in the reliability of automatic metrics. Further, although many metrics fail to show statistical improvements over ROUGE, two recent works, QAEval and BERTScore, do so in some evaluation settings.1



References used
https://aclanthology.org/
rate research

Read More

Abstract The scarcity of comprehensive up-to-date studies on evaluation metrics for text summarization and the lack of consensus regarding evaluation protocols continue to inhibit progress. We address the existing shortcomings of summarization evalua tion methods along five dimensions: 1) we re-evaluate 14 automatic evaluation metrics in a comprehensive and consistent fashion using neural summarization model outputs along with expert and crowd-sourced human annotations; 2) we consistently benchmark 23 recent summarization models using the aforementioned automatic evaluation metrics; 3) we assemble the largest collection of summaries generated by models trained on the CNN/DailyMail news dataset and share it in a unified format; 4) we implement and share a toolkit that provides an extensible and unified API for evaluating summarization models across a broad range of automatic metrics; and 5) we assemble and share the largest and most diverse, in terms of model types, collection of human judgments of model-generated summaries on the CNN/Daily Mail dataset annotated by both expert judges and crowd-source workers. We hope that this work will help promote a more complete evaluation protocol for text summarization as well as advance research in developing evaluation metrics that better correlate with human judgments.
Although some recent works show potential complementarity among different state-of-the-art systems, few works try to investigate this problem in text summarization. Researchers in other areas commonly refer to the techniques of reranking or stacking to approach this problem. In this work, we highlight several limitations of previous methods, which motivates us to present a new framework Refactor that provides a unified view of text summarization and summaries combination. Experimentally, we perform a comprehensive evaluation that involves twenty-two base systems, four datasets, and three different application scenarios. Besides new state-of-the-art results on CNN/DailyMail dataset (46.18 ROUGE-1), we also elaborate on how our proposed method addresses the limitations of the traditional methods and the effectiveness of the Refactor model sheds light on insight for performance improvement. Our system can be directly used by other researchers as an off-the-shelf tool to achieve further performance improvements. We open-source all the code and provide a convenient interface to use it: https://github.com/yixinL7/Refactoring-Summarization.
Summarization systems are ultimately evaluated by human annotators and raters. Usually, annotators and raters do not reflect the demographics of end users, but are recruited through student populations or crowdsourcing platforms with skewed demograph ics. For two different evaluation scenarios -- evaluation against gold summaries and system output ratings -- we show that summary evaluation is sensitive to protected attributes. This can severely bias system development and evaluation, leading us to build models that cater for some groups rather than others.
Modern summarization models generate highly fluent but often factually unreliable outputs. This motivated a surge of metrics attempting to measure the factuality of automatically generated summaries. Due to the lack of common benchmarks, these metric s cannot be compared. Moreover, all these methods treat factuality as a binary concept and fail to provide deeper insights on the kinds of inconsistencies made by different systems. To address these limitations, we devise a typology of factual errors and use it to collect human annotations of generated summaries from state-of-the-art summarization systems for the CNN/DM and XSum datasets. Through these annotations we identify the proportion of different categories of factual errors and benchmark factuality metrics, showing their correlation with human judgement as well as their specific strengths and weaknesses.
Sub-word segmentation is currently a standard tool for training neural machine translation (MT) systems and other NLP tasks. The goal is to split words (both in the source and target languages) into smaller units which then constitute the input and o utput vocabularies of the MT system. The aim of reducing the size of the input and output vocabularies is to increase the generalization capabilities of the translation model, enabling the system to translate and generate infrequent and new (unseen) words at inference time by combining previously seen sub-word units. Ideally, we would expect the created units to have some linguistic meaning, so that words are created in a compositional way. However, the most popular word-splitting method, Byte-Pair Encoding (BPE), which originates from the data compression literature, does not include explicit criteria to favor linguistic splittings nor to find the optimal sub-word granularity for the given training data. In this paper, we propose a statistically motivated extension of the BPE algorithm and an effective convergence criterion that avoids the costly experimentation cycle needed to select the best sub-word vocabulary size. Experimental results with morphologically rich languages show that our model achieves nearly-optimal BLEU scores and produces morphologically better word segmentations, which allows to outperform BPE's generalization in the translation of sentences containing new words, as shown via human evaluation.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا