مجردة تم تحديد نوعية تقييم تقييم التلخيص من خلال حساب الارتباط بين درجاته والشروح البشرية عبر عدد كبير من الملخصات. في الوقت الحالي، من غير الواضح مدى دقة تقديرات الارتباط هذه، ولا عما إذا كانت الاختلافات بين علاقات المقاييس تعكس فرقا حقيقيا أو إذا كان من المقرر أن مجرد فرصة. في هذا العمل، نتعامل مع هاتين المشكلتين من خلال اقتراح طرق لحساب فترات الثقة وتشغيل اختبارات الفرضية للترشيح باستخدام أساليب إعادة التقييد والنساء التمهيد والتلبيل. بعد تقييم أي من الأساليب المقترحة هو الأنسب للتلخيص من خلال تجربتي المحاكاة، نحلل نتائج تطبيق هذه الأساليب إلى العديد من مقاييس التقييم التلقائي المختلفة عبر ثلاث مجموعات من التعليقات الشروحية البشرية. نجد أن فترات الثقة هي واسعة إلى حد ما، مما يدل على عدم اليقين العالي في موثوقية المقاييس التلقائية. علاوة على ذلك، على الرغم من أن العديد من المقاييس يفشل في إظهار التحسينات الإحصائية على Rouge، فإن اثنين من الأعمال الأخيرة، Qaeval و Bertscore، تفعل ذلك في بعض إعدادات التقييم
Abstract The quality of a summarization evaluation metric is quantified by calculating the correlation between its scores and human annotations across a large number of summaries. Currently, it is unclear how precise these correlation estimates are, nor whether differences between two metrics' correlations reflect a true difference or if it is due to mere chance. In this work, we address these two problems by proposing methods for calculating confidence intervals and running hypothesis tests for correlations using two resampling methods, bootstrapping and permutation. After evaluating which of the proposed methods is most appropriate for summarization through two simulation experiments, we analyze the results of applying these methods to several different automatic evaluation metrics across three sets of human annotations. We find that the confidence intervals are rather wide, demonstrating high uncertainty in the reliability of automatic metrics. Further, although many metrics fail to show statistical improvements over ROUGE, two recent works, QAEval and BERTScore, do so in some evaluation settings.1
References used
https://aclanthology.org/
Abstract The scarcity of comprehensive up-to-date studies on evaluation metrics for text summarization and the lack of consensus regarding evaluation protocols continue to inhibit progress. We address the existing shortcomings of summarization evalua
Although some recent works show potential complementarity among different state-of-the-art systems, few works try to investigate this problem in text summarization. Researchers in other areas commonly refer to the techniques of reranking or stacking
Summarization systems are ultimately evaluated by human annotators and raters. Usually, annotators and raters do not reflect the demographics of end users, but are recruited through student populations or crowdsourcing platforms with skewed demograph
Modern summarization models generate highly fluent but often factually unreliable outputs. This motivated a surge of metrics attempting to measure the factuality of automatically generated summaries. Due to the lack of common benchmarks, these metric
Sub-word segmentation is currently a standard tool for training neural machine translation (MT) systems and other NLP tasks. The goal is to split words (both in the source and target languages) into smaller units which then constitute the input and o