تعتبر تمثيلات ناقلات الكلمات جزءا أساسيا من منهج NLP.هنا، نصف الواجبات المنزلية التي لديها طلاب تنفيذ طريقة شعبية لتعلم مجاهاجر Word، Word2VEC.يقوم الطلاب بتنفيذ الأجزاء الأساسية للطريقة، بما في ذلك إعادة النظر في النص، وأخذ العينات السلبية، وهبوط التدرج.يوفر رمز البداية إرشادات وتعامل مع العمليات الأساسية، والتي تتيح للطلاب التركيز على الجوانب الصعبة من الناحية النظرية.بعد توليد ناقلاتهم، يقوم الطلاب بتقييمهم باستخدام الاختبارات النوعية والكمية.
Word vector representations are an essential part of an NLP curriculum. Here, we describe a homework that has students implement a popular method for learning word vectors, word2vec. Students implement the core parts of the method, including text preprocessing, negative sampling, and gradient descent. Starter code provides guidance and handles basic operations, which allows students to focus on the conceptually challenging aspects. After generating their vectors, students evaluate them using qualitative and quantitative tests.
References used
https://aclanthology.org/
The exponential growth of the internet and social media in the past decade gave way to the increase in dissemination of false or misleading information. Since the 2016 US presidential election, the term fake news'' became increasingly popular and thi
Deep neural language models such as BERT have enabled substantial recent advances in many natural language processing tasks. However, due to the effort and computational cost involved in their pre-training, such models are typically introduced only f
Deep learning is at the heart of the current rise of artificial intelligence. In the field of Computer Vision, it has become the workhorse for applications ranging from self-driving cars to surveillance and security. Whereas deep neural networks have
Written by three experts in the field, Deep Learning is the only comprehensive book on the subject." -- Elon Musk, co-chair of OpenAI; cof-ounder and CEO of Tesla and SpaceX
ProfNER-ST focuses on the recognition of professions and occupations from Twitter using Spanish data. Our participation is based on a combination of word-level embeddings, including pre-trained Spanish BERT, as well as cosine similarity computed over