يركز Profner-St على اعتراف المهن والمهن من تويتر باستخدام البيانات الإسبانية.تعتمد مشاركتنا على مزيج من Adgeddings على مستوى الكلمات، بما في ذلك بيرت الإسبانية المدربة مسبقا، بالإضافة إلى تشابه التموين المحسوبة فوق مجموعة فرعية من الكيانات التي تعمل كمدخل للحصول على بنية فك تشفير التشفير مع آلية الاهتمام.أخيرا، حقق أفضل درجة لدينا قياس F1 من 0.823 في مجموعة الاختبار الرسمية.
ProfNER-ST focuses on the recognition of professions and occupations from Twitter using Spanish data. Our participation is based on a combination of word-level embeddings, including pre-trained Spanish BERT, as well as cosine similarity computed over a subset of entities that serve as input for an encoder-decoder architecture with attention mechanism. Finally, our best score achieved an F1-measure of 0.823 in the official test set.
References used
https://aclanthology.org/
This paper presents our contribution to the ProfNER shared task. Our work focused on evaluating different pre-trained word embedding representations suitable for the task. We further explored combinations of embeddings in order to improve the overall results.
This paper describes the entry of the research group SINAI at SMM4H's ProfNER task on the identification of professions and occupations in social media related with health. Specifically we have participated in Task 7a: Tweet Binary Classification to
Word embeddings are widely used in Natural Language Processing (NLP) for a vast range of applications. However, it has been consistently proven that these embeddings reflect the same human biases that exist in the data used to train them. Most of the
Extracting temporal information is critical to process health-related text. Temporal information extraction is a challenging task for language models because it requires processing both texts and numbers. Moreover, the fundamental challenge is how to
While the production of information in the European early modern period is a well-researched topic, the question how people were engaging with the information explosion that occurred in early modern Europe, is still underexposed. This paper presents