تجذب تصنيف المعنويات والكشف عن السخرية الكثير من الاهتمام من قبل مجتمع البحوث NLP. ومع ذلك، فإن حل هاتين المشكلتين باللغة العربية وعلى أساس بيانات الشبكة الاجتماعية (I.E.، Twitter) لا يزال مصلحة أقل. في هذه الورقة نقدم حلولا مخصصة لتصنيف المعنويات ومهام الكشف عن السخرية التي تم تقديمها كجزء من مهمة مشتركة من قبل أبو فرحة وآخرون. (2021). نقوم بضبط نماذج المحولات الحالية المحولات الحالية لاحتياجاتنا. بالإضافة إلى ذلك، نستخدم مجموعة متنوعة من تقنيات التعلم الآلي مثل أخذ العينات الأولية والتكبير والتعبئة والتغليف واستخدام ميزات META لتحسين أداء النماذج. نحن نحقق درجة F1 من 0.75 على مشكلة تصنيف المعنويات حيث يتم حساب درجة F1 على الفصول الإيجابية والسلبية (لا يتم أخذ الفصل المحايد في الاعتبار). نحن نحقق درجة F1 من 0.66 فوق مشكلة الكشف عن السخرية حيث يتم حساب درجة F1 عبر الفئة الساخرة فقط. في كلتا الحالتين، يتم تقييم النتائج المذكورة أعلاه على Arsarcasm-V2 - مجموعة بيانات ممتدة من Arsarcasm (Farha و Magdy، 2020) تم تقديمها كجزء من المهمة المشتركة. هذا يعكس تحسنا لتحقيق أحدث النتائج في كلتا المهام.
Sentiment classification and sarcasm detection attract a lot of attention by the NLP research community. However, solving these two problems in Arabic and on the basis of social network data (i.e., Twitter) is still of lower interest. In this paper we present designated solutions for sentiment classification and sarcasm detection tasks that were introduced as part of a shared task by Abu Farha et al. (2021). We adjust the existing state-of-the-art transformer pretrained models for our needs. In addition, we use a variety of machine-learning techniques such as down-sampling, augmentation, bagging, and usage of meta-features to improve the models performance. We achieve an F1-score of 0.75 over the sentiment classification problem where the F1-score is calculated over the positive and negative classes (the neutral class is not taken into account). We achieve an F1-score of 0.66 over the sarcasm detection problem where the F1-score is calculated over the sarcastic class only. In both cases, the above reported results are evaluated over the ArSarcasm-v2--an extended dataset of the ArSarcasm (Farha and Magdy, 2020) that was introduced as part of the shared task. This reflects an improvement to the state-of-the-art results in both tasks.
References used
https://aclanthology.org/
We describe our submitted system to the 2021 Shared Task on Sarcasm and Sentiment Detection in Arabic (Abu Farha et al., 2021). We tackled both subtasks, namely Sarcasm Detection (Subtask 1) and Sentiment Analysis (Subtask 2). We used state-of-the-ar
We present three methods developed for the Shared Task on Sarcasm and Sentiment Detection in Arabic. We present a baseline that uses character n-gram features. We also propose two more sophisticated methods: a recurrent neural network with a word lev
This paper provides an overview of the WANLP 2021 shared task on sarcasm and sentiment detection in Arabic. The shared task has two subtasks: sarcasm detection (subtask 1) and sentiment analysis (subtask 2). This shared task aims to promote and bring
The prominence of figurative language devices, such as sarcasm and irony, poses serious challenges for Arabic Sentiment Analysis (SA). While previous research works tackle SA and sarcasm detection separately, this paper introduces an end-to-end deep
Sarcasm detection is one of the top challenging tasks in text classification, particularly for informal Arabic with high syntactic and semantic ambiguity. We propose two systems that harness knowledge from multiple tasks to improve the performance of