Do you want to publish a course? Click here

NICT-5's Submission To WAT 2021: MBART Pre-training And In-Domain Fine Tuning For Indic Languages

إشارة NICT-5 إلى WAT 2021: MBART ما قبل التدريب والضبط على غرامة المجال للحصول على لغات ISS

263   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

In this paper we describe our submission to the multilingual Indic language translation wtask MultiIndicMT'' under the team name NICT-5''. This task involves translation from 10 Indic languages into English and vice-versa. The objective of the task was to explore the utility of multilingual approaches using a variety of in-domain and out-of-domain parallel and monolingual corpora. Given the recent success of multilingual NMT pre-training we decided to explore pre-training an MBART model on a large monolingual corpus collection covering all languages in this task followed by multilingual fine-tuning on small in-domain corpora. Firstly, we observed that a small amount of pre-training followed by fine-tuning on small bilingual corpora can yield large gains over when pre-training is not used. Furthermore, multilingual fine-tuning leads to further gains in translation quality which significantly outperforms a very strong multilingual baseline that does not rely on any pre-training.



References used
https://aclanthology.org/
rate research

Read More

In this work, we focus on a more challenging few-shot intent detection scenario where many intents are fine-grained and semantically similar. We present a simple yet effective few-shot intent detection schema via contrastive pre-training and fine-tun ing. Specifically, we first conduct self-supervised contrastive pre-training on collected intent datasets, which implicitly learns to discriminate semantically similar utterances without using any labels. We then perform few-shot intent detection together with supervised contrastive learning, which explicitly pulls utterances from the same intent closer and pushes utterances across different intents farther. Experimental results show that our proposed method achieves state-of-the-art performance on three challenging intent detection datasets under 5-shot and 10-shot settings.
This paper describes the work and the systems submitted by the IIIT-Hyderbad team in the WAT 2021 MultiIndicMT shared task. The task covers 10 major languages of the Indian subcontinent. For the scope of this task, we have built multilingual systems for 20 translation directions namely English-Indic (one-to- many) and Indic-English (many-to-one). Individually, Indian languages are resource poor which hampers translation quality but by leveraging multilingualism and abundant monolingual corpora, the translation quality can be substantially boosted. But the multilingual systems are highly complex in terms of time as well as computational resources. Therefore, we are training our systems by efficiently se- lecting data that will actually contribute to most of the learning process. Furthermore, we are also exploiting the language related- ness found in between Indian languages. All the comparisons were made using BLEU score and we found that our final multilingual sys- tem significantly outperforms the baselines by an average of 11.3 and 19.6 BLEU points for English-Indic (en-xx) and Indic-English (xx- en) directions, respectively.
In this paper we describe our submissions to WAT-2021 (Nakazawa et al., 2021) for English-to-Myanmar language (Burmese) task. Our team, ID: YCC-MT1'', focused on bringing transliteration knowledge to the decoder without changing the model. We manuall y extracted the transliteration word/phrase pairs from the ALT corpus and applying XML markup feature of Moses decoder (i.e. -xml-input exclusive, -xml-input inclusive). We demonstrate that hybrid translation technique can significantly improve (around 6 BLEU scores) the baseline of three well-known Phrase-based SMT'', Operation Sequence Model'' and Hierarchical Phrase-based SMT''. Moreover, this simple hybrid method achieved the second highest results among the submitted MT systems for English-to-Myanmar WAT2021 translation share task according to BLEU (Papineni et al., 2002) and AMFM scores (Banchs et al., 2015).
The rise of pre-trained language models has yielded substantial progress in the vast majority of Natural Language Processing (NLP) tasks. However, a generic approach towards the pre-training procedure can naturally be sub-optimal in some cases. Parti cularly, fine-tuning a pre-trained language model on a source domain and then applying it to a different target domain, results in a sharp performance decline of the eventual classifier for many source-target domain pairs. Moreover, in some NLP tasks, the output categories substantially differ between domains, making adaptation even more challenging. This, for example, happens in the task of aspect extraction, where the aspects of interest of reviews of, e.g., restaurants or electronic devices may be very different. This paper presents a new fine-tuning scheme for BERT, which aims to address the above challenges. We name this scheme DILBERT: Domain Invariant Learning with BERT, and customize it for aspect extraction in the unsupervised domain adaptation setting. DILBERT harnesses the categorical information of both the source and the target domains to guide the pre-training process towards a more domain and category invariant representation, thus closing the gap between the domains. We show that DILBERT yields substantial improvements over state-of-the-art baselines while using a fraction of the unlabeled data, particularly in more challenging domain adaptation setups.
This paper reports the Machine Translation (MT) systems submitted by the IIITT team for the English→Marathi and English⇔Irish language pairs LoResMT 2021 shared task. The task focuses on getting exceptional translations for rather low-resourced langu ages like Irish and Marathi. We fine-tune IndicTrans, a pretrained multilingual NMT model for English→Marathi, using external parallel corpus as input for additional training. We have used a pretrained Helsinki-NLP Opus MT English⇔Irish model for the latter language pair. Our approaches yield relatively promising results on the BLEU metrics. Under the team name IIITT, our systems ranked 1, 1, and 2 in English→Marathi, Irish→English, and English→Irish respectively. The codes for our systems are published1 .

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا