Do you want to publish a course? Click here

Few-Shot Intent Detection via Contrastive Pre-Training and Fine-Tuning

الكشف عن القدر من القليل من الرصاص عن طريق التدريب قبل التدريب والضبط الناعم

299   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

In this work, we focus on a more challenging few-shot intent detection scenario where many intents are fine-grained and semantically similar. We present a simple yet effective few-shot intent detection schema via contrastive pre-training and fine-tuning. Specifically, we first conduct self-supervised contrastive pre-training on collected intent datasets, which implicitly learns to discriminate semantically similar utterances without using any labels. We then perform few-shot intent detection together with supervised contrastive learning, which explicitly pulls utterances from the same intent closer and pushes utterances across different intents farther. Experimental results show that our proposed method achieves state-of-the-art performance on three challenging intent detection datasets under 5-shot and 10-shot settings.

References used
https://aclanthology.org/

rate research

Read More

As the labeling cost for different modules in task-oriented dialog (ToD) systems is expensive, a major challenge is to train different modules with the least amount of labeled data. Recently, large-scale pre-trained language models, have shown promis ing results for few-shot learning in ToD. In this paper, we devise a self-training approach to utilize the abundant unlabeled dialog data to further improve state-of-the-art pre-trained models in few-shot learning scenarios for ToD systems. Specifically, we propose a self-training approach that iteratively labels the most confident unlabeled data to train a stronger Student model. Moreover, a new text augmentation technique (GradAug) is proposed to better train the Student by replacing non-crucial tokens using a masked language model. We conduct extensive experiments and present analyses on four downstream tasks in ToD, including intent classification, dialog state tracking, dialog act prediction, and response selection. Empirical results demonstrate that the proposed self-training approach consistently improves state-of-the-art pre-trained models (BERT, ToD-BERT) when only a small number of labeled data are available.
This paper investigates the effectiveness of pre-training for few-shot intent classification. While existing paradigms commonly further pre-train language models such as BERT on a vast amount of unlabeled corpus, we find it highly effective and effic ient to simply fine-tune BERT with a small set of labeled utterances from public datasets. Specifically, fine-tuning BERT with roughly 1,000 labeled data yields a pre-trained model -- IntentBERT, which can easily surpass the performance of existing pre-trained models for few-shot intent classification on novel domains with very different semantics. The high effectiveness of IntentBERT confirms the feasibility and practicality of few-shot intent detection, and its high generalization ability across different domains suggests that intent classification tasks may share a similar underlying structure, which can be efficiently learned from a small set of labeled data. The source code can be found at https://github.com/hdzhang-code/IntentBERT.
We present VideoCLIP, a contrastive approach to pre-train a unified model for zero-shot video and text understanding, without using any labels on downstream tasks. VideoCLIP trains a transformer for video and text by contrasting temporally overlappin g positive video-text pairs with hard negatives from nearest neighbor retrieval. Our experiments on a diverse series of downstream tasks, including sequence-level text-video retrieval, VideoQA, token-level action localization, and action segmentation reveal state-of-the-art performance, surpassing prior work, and in some cases even outperforming supervised approaches. Code is made available at https://github.com/pytorch/fairseq/examples/MMPT.
In this paper we describe our submission to the multilingual Indic language translation wtask MultiIndicMT'' under the team name NICT-5''. This task involves translation from 10 Indic languages into English and vice-versa. The objective of the task w as to explore the utility of multilingual approaches using a variety of in-domain and out-of-domain parallel and monolingual corpora. Given the recent success of multilingual NMT pre-training we decided to explore pre-training an MBART model on a large monolingual corpus collection covering all languages in this task followed by multilingual fine-tuning on small in-domain corpora. Firstly, we observed that a small amount of pre-training followed by fine-tuning on small bilingual corpora can yield large gains over when pre-training is not used. Furthermore, multilingual fine-tuning leads to further gains in translation quality which significantly outperforms a very strong multilingual baseline that does not rely on any pre-training.
Reading order detection is the cornerstone to understanding visually-rich documents (e.g., receipts and forms). Unfortunately, no existing work took advantage of advanced deep learning models because it is too laborious to annotate a large enough dat aset. We observe that the reading order of WORD documents is embedded in their XML metadata; meanwhile, it is easy to convert WORD documents to PDFs or images. Therefore, in an automated manner, we construct ReadingBank, a benchmark dataset that contains reading order, text, and layout information for 500,000 document images covering a wide spectrum of document types. This first-ever large-scale dataset unleashes the power of deep neural networks for reading order detection. Specifically, our proposed LayoutReader captures the text and layout information for reading order prediction using the seq2seq model. It performs almost perfectly in reading order detection and significantly improves both open-source and commercial OCR engines in ordering text lines in their results in our experiments. The dataset and models are publicly available at https://aka.ms/layoutreader.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا