تقدم هذه الورقة تقديم مركز خدمات Translate Huawei (HW-TSC) إلى مهمة مشتركة من WMT 2021.نشارك في 7 أزواج لغوية، بما في ذلك ZH / EN، DE / EN، JA / en، HA / EN، هي / EN، HI / BN، و XH / ZU في كلا الاتجاهين تحت الحالة المقيدة.نحن نستخدم بنية المحولات والحصول على أفضل أداء عبر المتغيرات المتعددة بأحجام أكبر معلمة.نحن نقوم بتنفيذ ما قبل المعالجة المفصلة والتصفية على مجموعات بيانات ثنائية اللغة وأنتجة على نطاق واسع.يتم استخدام العديد من الاستراتيجيات الشائعة الاستخدام لتدريب نماذجنا، مثل الترجمة الخلفية، الترجمة الأمامية، الترجمة إلى الأمام، الترجمة متعددة اللغات، تقطير المعرفة الفرعية، إلخ. يحصل تقديمنا نتائج تنافسية في التقييم النهائي.
This paper presents the submission of Huawei Translate Services Center (HW-TSC) to the WMT 2021 News Translation Shared Task. We participate in 7 language pairs, including Zh/En, De/En, Ja/En, Ha/En, Is/En, Hi/Bn, and Xh/Zu in both directions under the constrained condition. We use Transformer architecture and obtain the best performance via multiple variants with larger parameter sizes. We perform detailed pre-processing and filtering on the provided large-scale bilingual and monolingual datasets. Several commonly used strategies are used to train our models, such as Back Translation, Forward Translation, Multilingual Translation, Ensemble Knowledge Distillation, etc. Our submission obtains competitive results in the final evaluation.
References used
https://aclanthology.org/
This paper presents the submission of Huawei Translation Services Center (HW-TSC) to WMT 2021 Efficiency Shared Task. We explore the sentence-level teacher-student distillation technique and train several small-size models that find a balance between
This paper presents our work in WMT 2021 Quality Estimation (QE) Shared Task. We participated in all of the three sub-tasks, including Sentence-Level Direct Assessment (DA) task, Word and Sentence-Level Post-editing Effort task and Critical Error Det
This paper presents the submission of Huawei Translation Service Center (HW-TSC) to WMT 2021 Triangular MT Shared Task. We participate in the Russian-to-Chinese task under the constrained condition. We use Transformer architecture and obtain the best
This paper describes Lingua Custodia's submission to the WMT21 shared task on machine translation using terminologies. We consider three directions, namely English to French, Russian, and Chinese. We rely on a Transformer-based architecture as a buil
The machine translation efficiency task challenges participants to make their systems faster and smaller with minimal impact on translation quality. How much quality to sacrifice for efficiency depends upon the application, so participants were encou