No Arabic abstract
A critical requirement for diverse applications in Quantum Information Science is the capability to disseminate quantum resources over complex quantum networks. For example, the coherent distribution of entangled quantum states together with quantum memory to store these states can enable scalable architectures for quantum computation, communication, and metrology. As a significant step toward such possibilities, here we report observations of entanglement between two atomic ensembles located in distinct apparatuses on different tables. Quantum interference in the detection of a photon emitted by one of the samples projects the otherwise independent ensembles into an entangled state with one joint excitation stored remotely in 10^5 atoms at each site. After a programmable delay, we confirm entanglement by mapping the state of the atoms to optical fields and by measuring mutual coherences and photon statistics for these fields. We thereby determine a quantitative lower bound for the entanglement of the joint state of the ensembles. Our observations provide a new capability for the distribution and storage of entangled quantum states, including for scalable quantum communication networks .
Violations of a Bell inequality are reported for an experiment where one of two entangled qubits is stored in a collective atomic memory for a user-defined time delay. The atomic qubit is found to preserve the violation of a Bell inequality for storage times up to 21 microseconds, 700 times longer than the duration of the excitation pulse that creates the entanglement. To address the question of the security of entanglement-based cryptography implemented with this system, an investigation of the Bell violation as a function of the cross-correlation between the generated nonclassical fields is reported, with saturation of the violation close to the maximum value allowed by quantum mechanics.
Entanglement measures quantify nonclassical correlations present in a quantum system, but can be extremely difficult to calculate, even more so, when information on its state is limited. Here, we consider broad families of entanglement criteria that are based on variances of arbitrary operators and analytically derive the lower bounds these criteria provide for two relevant entanglement measures: the best separable approximation (BSA) and the generalized robustness (GR). This yields a practical method for quantifying entanglement in realistic experimental situations, in particular, when only few measurements of simple observables are available. As a concrete application of this method, we quantify bipartite and multipartite entanglement in spin-squeezed Bose-Einstein condensates of $sim 500$ atoms, by lower bounding the BSA and the GR only from measurements of first and second moments of the collective spin operator.
We report significant improvements in the retrieval efficiency of a single excitation stored in an atomic ensemble and in the subsequent generation of strongly correlated pairs of photons. A 50% probability to transform the stored excitation into one photon in a well-defined spatio-temporal mode at the output of the ensemble is demonstrated. These improvements are illustrated by the generation of high-quality heralded single photons with a suppression of the two-photon component below 1% of the value for a coherent state. A broad characterization of our system is performed for different parameters in order to provide input for the future design of realistic quantum networks.
Quantum technologies use entanglement to outperform classical technologies, and often employ strong cooling and isolation to protect entangled entities from decoherence by random interactions. Here we show that the opposite strategy - promoting random interactions - can help generate and preserve entanglement. We use optical quantum non-demolition measurement to produce entanglement in a hot alkali vapor, in a regime dominated by random spin-exchange collisions. We use Bayesian statistics and spin-squeezing inequalities to show that at least $1.52(4)times 10^{13}$ of the $5.32(12) times 10^{13}$ participating atoms enter into singlet-type entangled states, which persist for tens of spin-thermalization times and span thousands of times the nearest-neighbor distance. The results show that high temperatures and strong random interactions need not destroy many-body quantum coherence, that collective measurement can produce very complex entangled states, and that the hot, strongly-interacting media now in use for extreme atomic sensing are well suited for sensing beyond the standard quantum limit.
Cold atomic ensembles can mediate the generation of entanglement between pairs of photons. Photons with specific directions of propagation are detected, and the entanglement can reside in any of the degrees of freedom that describe the whole quantum state of the photons: polarization, spatial shape or frequency. We show that the direction of propagation of the generated photons determines the spatial quantum state of the photons and therefore, the amount of entanglement generated. When photons generated in different directions are combined, this spatial distinguishing information can degrade the quantum purity of the polarization or frequency entanglement.